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Preface

Tackling this thesis project required a search for knowledge among several

areas previously beyond my grasp. These included neurophysiology, mathematics,

pattern recognition and artificial neural network culture, and software development.

Thanks to Dr. Steven K. Rogers, Dr. Matthew Kabrisky, Captain Dennis Ruck and

Captain Greg Tarr, I had access to expertise in all of these disciplines. I would never

have conceived of this research project, let alone attempted a crack at it, without

their guidance. I am further indebted to my wife, Tonda, for her support and

understanding throughout my pursuit of the degree requirements. This experience

has immeasurably improved my knowledge of science and engineering, also leaving

me with an appreciation for many complex concepts beyond my comprehension.

As expected, earning this MSEE also entailed plenty of grief and aggravation. In

fact, I almost turned down this rare educational opportunity before it began, until I

pondered its monetary cost. It was free.

Laurence Edward Lazofson
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Abstract

This thesis project included a literature survey of biological and artificial neu-

ral network research followed by development and testing of high-order and image

recognition hierarchical neural network algorithms. Following training, performance

testing of second-order and third-order networks yielded maximum accuracies com-

parable to those achieved by multilayer perceptron classifiers operating on test data

sets. Several versions of an image classification algorithm were tested for learning

performance using pixel data from forward-looking infrared (FLIR) images of tanks,

trucks, target boards, and clutter. Employing the biologically-motivated Lamberti-

zation and contrast normalization of pixel windows, correlations with multiple Gabor

function wavelets, and a "phase synchronizing" local averaging routine, the image

classification network extracted data features. Different network versions fed the

extracted features to varying output classification schemes. To improve separation

of problem classes, recommendations were made for varying the parameters of the

Gabor function wavelets and modifying the phase synchronization scheme to extract

more suitable features from image pixel data.
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A BIOLOGICALLY-INSPIRED

NEURAL NETWORK ARCHITECTURE

FOR IMAGE PROCESSING

I. Introduction

1.1 Summary of Current Knowledge

It is widely known that in the striate (visual) cortex, certain key features of

visual image data are segmented following mapping from the retinas. These sepa-

rately distinguished aspects of visual information include intensity (of three colors),

motion, binocular disparity, and texture (14). Texture is essentially characterized

by spatial frequency, a term often used to describe both pitch and orientation of

edges. In other words, texture consists of localized sinusoidal grating patterns, or in-

tensity functions, with varying periodicity and angular orientation in the 2-D visual

field (13). Figure 1 illustrates this concept.

Seeking a better understanding of cortical processes, neurophysiological re-

searchers have investigated the functioning of cortical tissue. As a "crumpled sheet"

of neural mass, the mammalian cortex is divided into cortical columns. This 2-D

array of adjacent cortical columns functionally resembles a honeycomb (13). In the

visual cortex (Area 17), each cortical column is selectively tuned to respond to a

different aspect of segmented visual data. Blasdel and Salama employed "voltage-

sensitive dyes" to observe "detailed maps of orientation selectivity," or functional

organization of cortical columns, in the visual cortex of macaque monkeys (2).

Experimental observations of neuronal functioning in the visual cortex are used

in this thesis to develop a biologically-motivated artificial neural network system for

1



Figure 1. 2-D Windowed Patterns of Varying Periodicities and Orientations

image processing. Observed neuronal processes highlighted in this research included

stimulus-specific responsiveness (4, 9, 10, 11, 12, 26), phase synchronous firing of

groups of neurons (4, 9, 26), the semblance of Gabor functions in neuronal receptive

field plots (4, 11, 12), and "axo-axonic interconnections" (19) in biological neural

networks. The artificial neural network system developed in this thesis emulated

the characteristics of these observed biological phenomena. Details are discussed in

Chapter II.

1.1.1 Neuronal Stimulus Specificity Ervin, Gray and Singer, Hubel and

Wiesel, and Jones, Stepnoski, and Palmer independently observed stimulus-specific

responsiveness of neurons in cat visual cortex (4, 9, 10, 12). Each research team

varied stimuli exposed to the visual field of test subjects and measured neuron firing

outputs. One unified result from these researchers seems to verify that the visual

cortex is an organized collection of columns, with some of these columns sensitive to

specific orientations of a stimulus (14).

2



1. 1.2 Phase Synchrony Gray and Singer further observed synchronous oscil-

lations of stimulus-specific neurons in the visual cortex of cats (9). These findings

indicate a possible cortical mechanism that enables neurons responding to unique

stimuli to simultaneously broadcast their message to higher cortical levels (26). Such

a mechanism facilitates the "binding" of local stimulus details into larger, global fea-

ture aspects. Attempting to mathematically model these findings, Kammen, Holmes,

and Koch proposed and tested two algorithms for phase locking artificial cortical

columns (15). These concepts are discussed in greater detail in Chapter II of this

thesis.

1.1.3 Gabor Functions Modeling Neuronal Responses Several biological re-

searchers also recorded neurone! receptive field responses that mapped to the gen-

eral form of Gabor functions (Figure 2) (4, 11, 12). This may be a highly significant

finding, as a Gabor elementary function might model a transfer function of a neuron

being stimulated within a linear region of operation (14).

An elementary Gabor function consists of a sinusoidal function multiplied (or

windowed) by a Gaussian function. A Gabor function is consequently character-

ized by the frequency of the sinusoidal cofactor and the variance of the Gaussian

cofactor. The Gaussian function localizes, or truncates, the sinusoid. The sinusoid

discriminates frequency. (1)

Independent research by Ayer and Fretheim implemented 2-D spatial Gabor

functions in segmenting image features. Both researchers correlated image scenes

with multiple Gabor functions of differing spatial frequencies and variances (1, 6). It

is possible that the visual cortex employs a similar correlation process in discerning

texture information on an image (14).

1.1.4 "Axo-Azonic" Neuronal Connections In addition to the well-known

"axo-dendritic" neural connection model depicted in Figure 3, neurophysiological

research also indicates the existence of "axo-axonic" synapses in biological neural

3



Figure 2. Examples of 2-D Gabor Functions (1:3)

networks (19:2). These connections suggest processing interactions, or modulations,

among neuron outputs. The "axo-axonic" connection serves as a model for high-

order artificial neural networks discussed later in this document (19).

1.1.5 Theory The pursuit of this thesis work required tandem consideration

of previously developed artificial neural network algorithms and the cited biolog-

ical observations of neural functioning in cat visual cortex. In the visual cortex,

phase synchronous firing of stimulus-specific groups of neurons may indeed tempo-

rally unite their conveyed messages. This would enable simultaneous summation

and processing of these dynamic neuronal responses at higher cortical levels (26).

However, in implementing a software model of a network, computer memory storage

essentially freezes time by holding calculated numerical outputs of artificial neurons.

A subsequent step then sums these stored values in other artificial neurons (typ-

ically in a higher layer). Software modeling thus removes tOe temporal aspect of

neuronal oscillatory firing by storing numerical output values that represent firing

4



rate. Thic skirts the need for synchronizing outputs of software neurons, whereas

phase locking phenomena seem crucial in biological neural networks with transient

oscillatory outputs. Similarly, it is questionable whether biologically measured tem-

poral latency, an aspect of phase delay, would prove valuable in software models of

neural networks (23). This concept is discussed further in Chapter II.

Results from cited researchers also allude to neuronal stimulus specificity that

functionally responds in the semblance of unique Gabor spatial mappings. It is

widely believed that neurons in the visual cortex operate as Gabor detectors, re-

sponding to unique combinations of pitch and orientation to segment localized image

textures (14). This implication influenced the direction of this thesis work.

1.2 Backqround

1.2.1 Artificial Neural Networks For several decades, researchers have been

developing and testing a variety of artificial neural network algorithms for use on

certain classes of problems. These algorithms, whether supervised, unsupervised, or

hybrid models, are capable of "learning" functional relationships among data sets.

Network learning, also referred to as "training," occurs as the network is presented

with examples of vector feature data. For some classes of networks, the training

process drives iterative mathematical adjustments of node connection "weights,"

or functional multipliers, until network convergence. Following training, a viable

network should be able to "generalize," or solve a problem, with new, unknown data

inputs. (23)

Unlike conventional electronic digital computer serial processing, neural net-

work algorithms employ densely interconnected nodes modeling massive parallelism.

As seen in biological neural networks, massively parallel architectures yield a more

robust rystem, characterized by graceful degradation rather than being prone to to-

tal failure due to one malfunctioning computational element (18, 23). Ultimately,

software-developed neural networks may be holographically besed or implemented

5



electronically on silicon chips.

Emulating some of the observed aspects of biological nearons (Figure 3) and

neural networks, artificial neural networks have been designed to solve classifica-

tion, identification and optimization problems, perform functional estimation and

prediction, enhance signal-to-noise ratios, and serve in a variety of other applica-

tions (3, 23). Image and speech recognition aud prediction of chaotic time series are

specific examples of potential applications of artificial neural networks.

1.92.2 High-Order Artificial Neural Networks High-order neural network al-

goritms have been shown to surpass the performance of "classical" multilayer feed-

forward networks for some applications (8, 19, 20). By feeding polynomial functional

combinations of vector data components into a single layer of artificial neurons, these

networks may efficiently "carve out' complex, functional decision regions in multi-

dimensional feature spaces. High-order networks can thus tackle prcblems that are

not linearly separable. Compared to multilayer first-order networks, tests of these

high-order models indicated faster convergence and greater probability of attaining

solutions for some problems (8, 19, 20).

Multilayer first-order networks (Figure 4) also functionally adapt to nonlinear-

ities by implicitly implementing higher orders in their hidden node layers. However,

the added network layers and additional weight modifications may yield slower, and

less probable, convergence to solutions. For these reasons, high-order network al-

gorithms have been pursued in solving more complex, nonlinearly-separable prob-

lems. (8, 21)

1.3 Problem Statement

There existed a need to perform a consolidated literature review of biological

and artificial neural network research. Incorporating the concepts and phenomena

culled from this integrated literature survey, there was a subsequent need to expand

6
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the state of the art of existing neural network algorithms.

1.4 Objective

This thesis work sought to survey, integrate, and document a subset of bio-

logical and artificial neural network research. Having initially reconciled this body

of knowledge, this thesis subsequently aimed to develop and test a software model

consistent with the cited research findings. This entailed emulating some of the bi-

ological observations of cortical functioning. The intent was to employ high-order

networks and implement Gabor functions and the concept of phase synchrony to

create a better model for solving certain classes of engineering problems, including

image processing. The model ultimately employed Lambertization and contrast nor-

malization of windowed image regions, correlations with multiple Gabor functions, a

phase synchronizing local averaging routine, and a feedforward network classification

layer. Details are covered in Chapter III.

1.5 Scope and Limitations

This work did not attempt to provide a comprehensive, unified explanation

of cortical processing. Rather, this thesis intended to describe and emulate some

of the observed characteristics of neuronal functioning in the visual cortex, and

extend previously developed artificial neural network models. This work did not

address the validity of biological observations and proposed cortical phenomena by

cited researchers. This thesis did not assess whether some of the described cortical

measurements may have been artifacts.

This research focused on a subset of observed neural characteristics, specifically

citing work by Ervin (4), Gray and Singer (9), and Jones, Stepnoski, and Palmer (11,

12). Attempting to unify the biological observations of these researchers, this thesis

subsequently sought to develop an artificial neural network model consistent with

the cited aspects of neurophysiology. This model was related to current network

9



algorithms and applied to the target recognition problem for forward-looking infrared

(FLIR) images.

1.6 Definitions

1-D One-dimensional.

2-D Two-dimensional.

Artifact An observed measurement not related to a process or phenomena of inter-

est, typically resulting from a random or systematic error in experimental or

measurement procedures.

Artificial Neural Network (Net) Software or hardware emulation of simple, ob-

servable characteristics of biological neural networks.

Artificial Neuron A computational element that mathematically models a biolog-

ical neuron.

Chaotic Time Series A deterministic function that is seemingly random (23).

Gabor Function A sinusoidal function multiplied (or windowed by) a Gaussian

function, characterized by the frequency of the sinusoidal cofactor and the

variance of the Gaussian cofactor (1).

Neuron Nerve cell.

Node A single computational element of a neural network.

Receptive (Visual) Field The visual region over which a specific neuron responds

(in the visual cortex) (10:109).

Segment To distinguish features or aspects of interest from background.

Spatial Frequency Pitch (periodicity) and angular orientation of a function or

structure of interest, such as an image.

Striate Cortex Section of cortex that receives mapped visual information, also

known as visual cortex, VI, or Area 17 (14).

10



Weights Multiplicative factors betweeiA nodes or between inputs and nodes, analo-

gous to the strength of synaptic ronnections between neurons (17). Also called

"connection weights."

Wetware Biological cell computational elements (23).

1.7 Sequence of Presentation

This introductory chapter discussed the problem and background concepts for

this thesis. Chapter II provides the literature review for this research. Chapter III

presents the research approach, discussing methods and algorithms. Results and

recommendations are covered in Chapter IV and Chapter V, respectively.

11



II. Literature Review

Several of the published research findings cited in this thesis depict various

experimental observations of neuronal processes in the striate (visual) cortex. These

observations of apparent corticai functioning include stimulus-specific responsive-

ness and phase synchrony of neuronal firing, the semblance of Gabor functions in

characterizing neuronal receptive fields, and "axo-axonic interconnections" (19) in

biological neural networks. A key aspect of this thesis work, addressed in this chap-

ter, aimed to reconcile the different cited experimental observations. The subsequent

research goal sought the development of biologically-motivated neural network algo-

rithms for solving certain classes of engineering problems. For this thesis work, the

problem of interest was image processing.

2.1 Neurophysiological Research

2.1.1 Ervin Research published by Ervin in 1965 (4) provides a solid basis

for stimulus specificity of neuronal response, phase synchronicity in groups of firing

neurons, and use of Gabor functions in characterizing neuronal receptive field pro-

files. Ervin's paper helps unify these aspects of cortical processing into a coherent

view supported by more current research articles. For this reason, his relatively

early discoveries are discussed along with recently published research. Ervin's ex-

perimental observations followed Hubel and Wiesel's widely acknowledged research

characterizing neuronal receptive fields and firing responses in cat visual cortex (10).

Using a computer display to generate a. variety of visual stimuli in front of

the eyeball of an immobilized cat, Ervin experimentally tracked response outputs in

the cat's visual cortex. This was done with a n-iicroelectrode and a gross electrode,

both inserted intlo the visual cortex and positioned relatively close together. Limited

in size, the mnicroelectrode measured firing output of a single neuron responding to

each visual stimulus. Tfl.- larger gross electrode, piercing through many neurons in

12



the surrounding cortical region, measured the average evoked response to the same

visual stimulus. Data were stored by computer. (4)

Unfortunately, Ervin's article did not explicitly state whether or not the cat

was anesthetized. In assessing the validity of measured neuronal responses, this

may be a significant factor, as neurons ;n an anesthetized subject might not display

typical behavior (13).

While monitoring the firing rate of" a single neuron with the rnicroelectrode,

Ervin initially measured the neuron's output response as a function of position in

its visual receptive field. A small spot of light, analogous to an impulse input,

was shifted point by point across the visual field. The neuronal firing rate was

measured for each field position of the constant-intensity spot of light (4). Ervin

employed this initial procedure to locate the "visual field center" (4:37), pinpointing

the location in the neuron's receptive field where the light spot induced the greatest

firing response. Over twenty years later, Jones and Palmer performed a similar

experimental procedure to characterize the spatial receptive field response of neurons

in cat striate cortex (11).

Having located the visual field center, Ervin employed it as a center point for

visual stimuli. Applied stimuli included lines of varying angular orientation, circles,

squares, and triangles of different sizes, and multiple point patterns. Each unique

stimulus flashed before the cat's eye for a duration of 400 ms. The microelectrode and

gross electrode recorded the firing responses for each test neuron and its rurrounding

region, respectively. (4:36-38)

For each specific stimulus, Ervin plotted the individual neuron's firing rate,

the average evoked response of the area surrounding the neuron, and the stimulus

duration, all versus time (Figure 5). Actually, he divided the time axis into discrete

20 ms interval bins. For each interval, the number of firings of the test neuron were

counted and plotted (4:39-40). The resulting histogram effectively conveys firing

frequency versus time, though in an indirect way.

13
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Figure 5. Neuronal Firing Histogram (Top), Stimulus Duration (Middle), and Av-
erage Evoked Response (Bottom) Plots with 20ms Bins (4:40)

Comparisons of the resulting one-dimensional plots revealed a startling discov-

ery. A myriad of different plot patterns for varying stimuli indicated stimulus-specific

responses in neurons (4, 9, 10, 11, 12, 26). Each stimulus generated a unique pattern

of "phasic," "tonic," and inhibitory components along the time scale (4:40). As used

by Ervin, phasic components referred to relatively transient peaking points on the

firing rate plots, while tonic components described plateau regions (4). Ervin's ob-

servations of stimulus specific responsiveness followed previous work by Hubel and

Wiesel, who claimed "shape, position, and orientation" (10:151) of stimuli affect

neuronal firing responses.

Ervin conveyed another crucial concept by juxtaposing the plotted response of

each neuron with the average evoked response of its surrounding region. In general,

the plot patterns for both the individual neuron and the average evoked response

were similar (4:40) Figure 5 conveys this idea. This may indicate synchronous

oscillatory activity of groups of neurons (4, 9, 26). Such an inference, if true, may

be of tremendous significance in understanding higher cortical processes. Recent

research by Gray and Singer further suggested this phenomena (9).

14
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Figure 6. J-D Plots of Neuronal Receptive Field Responses (4:43)

Similar to his procedure for initially determining a neuron's visual field center,

Ervin collected additional data to spatially characterize a neuron's entire receptive

field for different phasic components of its firing response. This process essentially

froze time at the occurrence of a phasic component on a neuron's plot of firing rate

versus time. Firing rate was then plotted as a function of spatial position across

the neuron's 2-D visual receptive field (4:42-44). Ervin illustrated this relationship

on both 1-D and 2-D spatial coordinate plots (Figure 6). It is interesting to note

that these plots resemble the envelopes of loD Gabor functions. This finding is in

accord with later work by Jones and Palmer (11). Ervin obsered that different

phasic components (early and late) resulting from a single stimilus produced unique

receptive field response mappings (4:42).

15



Ervin's plots of firing rate versus time also indicated that responses to simul-

taneous stimuli at multiple points in a neuron's receptive field did not necessarily

sum (4:45). This suggests that, lacking the property of superposition, a neuron is

not obliged to respond linearly to stimuli. This should preclude unrestricted use of a

previously characterized impulse response to predict cell, or system, output (13, 21).

Depending on a given neuron's "choice" of specific stimulus, however, it might

linearly add the correct combination of inputs (13, 21). For example, a neuron with

a "preference" for edges at a given orientation may respond linearly to two points

of light extrapolating to a line following this "preferred" orientation. Otherwise,

if two light points form a segment of different orientation in the visual field, this

same neuron may be inhibited and behave nonlinearly. Ervin suggests this idea of

orientational preference (4:50). Furthermore, the linearity assumption for neural

response may be valid for limited ranges of stimuli (14).

2.1.2 Jones and Palmer In 1987, Jones and Palmer employed a procedure

they termed 'reverse correlation" (11) to characterize the 2-D spatial receptive field

responses of neurons in cat striate cortex. Similar to Ervin's results, their clear,

2-D mappings of the visual receptive field response closely approximated the form

of Gabor functions.

Fourteen anesthetized, adult cats were exposed to visual stimuli on an oscillo-

scope screen. The stimuli consisted of small, rectangular, bright and dark spots pre-

sented for varying time durations, typically 50 or 100 ms (11). The reverse correla-

tion process electronically stored, and later matched, measured neuron spike outputs

with the appropriate stored stimuli generated on the oscilloscope screen (11:1191).

Receptive field functions for bright and dark stimuli were then plotted separately

(firing response versus spatial field position). To fuse the receptive field plots for

both bright and dark stimuli, Jones and Palmer subtracted the dark stimulus out-

put functions from corresponding light stimulus output functions. Thus the dark

16
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Figure 7. 2-D Spatial Plots of Neuronal Receptive Field Responses (11:1196)

stimulus output patterns emulated inhibition of brightness in the 2-D spatial do-

main (11:1192). As noted by Jones and Palmer (11), the resulting receptive field

response functions appeared to be Gabor functions (Figure 7).

As Jones and Palmer indicated, previous work by other researchers attempting

to map neuronal receptive fields with one-dimensional measurements might prove in-

valid if the overall response functions were not Cartesian separable (11:1188). Rather

than independently sweep across length and width axes, Jones and Palmer charac-

terized the receptive fields in two spatial dimensions. This method provided accurate

2-D representations of the field mappings, regardless of their functional Cartesian

separability (11:1188). In fact, Jones and Palmer ascertained that approximately

half of the neurons investigated displayed 2-D receptive field functions that were not

Cartesian separable (11:1208).
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Figure 8. Varying Delay Times for 2-D Spatial Piots of Neuronal Receptive Field
Response (11:1197)

Jones and Palmer further employed the reverse correlation process to assess

the time delay between stimuli and corresponding output spikes in the test neuron.

They varied the delay time at values of 0, 50, 100, and 150 ms in the reverse corre-

lation algorithm. Their graphical results showed that at a time delay of 50 ms after

stimulus presentation, a distinguishable functional form of the neuronal receptive

field response emerged (Figure 8). At time delays of 0, 100, and 150 ms after stim-

ulus presentation, the receptive field plots depicted mostly noise with no apparent

response function. (11:1195-1197)

Jones' and Palmer's observations can be reconciled with Ervin's findings. For

a given test neuron and a specific applied stimulus, emergence of a receptive field

respon3e, in the form of a Gabor function, occurred 50 ms after stimulus presenta-

tion (11:1195-1197). This point ia time marked what Ervin called a phasic compo-

nent, or transient -•axima of neuronal firing, indicating the time until appearance

of the receptive field function. In light of Ervin's findings, the unique receptive

field response profile and its 50 mso delay are both probably unique to the stimulus
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presented and the test neuron (4, 11).

It would be interesting to see an extension of Jones' and Palmer'3 results

through continued use of their reverse correlation process beyond a 150 ms delay

time, Jones and Palmer observed the emergence of a receptive field response, in

the form of a Gabor function, 50 ms following the visual stimudus. They discontin-

ued the reverse correlation process after a 150 ms delay (11:1197). For the applied

stimulus, there may yet have existed additional, later phasic components for the

neuronal response, as Ervin observed on firing rate versus time plots (4:40). These

later components, perhaps emerging at delays of 200 ma and beyond, may give rise

to different receptive field response mappings, although still perhaps in the general

form of Gabor functions. It is possible that different combinations of test neurons

and stimuli might yield unique delay times for one or more phasic components, each

with unique 2-D Gabor field mappings. Extending the reverse correlation proce-

dure in this manner could confirm Ervin's observations and expand understanding

of stimulus specificity in neuronal responses.

2.1.3 Jones, St'epnoski, and Palmer Beyond the previously described re-

search characterizing 2-D spatial receptive field responses of neurons, Jones, Step-

noski, and Palmer examined the 2-D spectral response of 36 neurons in cat visual

cortex (12:1212). Their experimental proceduie was similar to that of the Jones and

Palmer experiment cited earlier. In this experiment, however, the visual stimuli were

sinusoidal gratings drifting across the neuronal receptive field (12:1212).

Vazying the spatial frequency and orientation of these 2-D sinusoidal inten-

sity functions, Jones et al measured and graphically depicted neuronal response

(spiking) as a function of spatial frequency and orientation appearing in the visual

rcceptive field (12). Jones et al noted that a. cortical cell's response to the drifting

gratings yielded "a rectified sinusoidal modulation of the spike frequency" where

"the degree of rectification varied fom cell to cell, but for each cell, the form of
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Figure 9. 2-D Spectral Plot of Neuronal Receptive Field Response (12:1222)

the response was constant irrespectivc of ktimulus spatial frequency, orientation, or

contrast" (12:1212).

Examining the plots in this artic!e, these neuronal spectral responses appeared

in the form of Fourier transforms of Gabor functions, manifested as two, sepa rate 2-.D

Gaussian functions (Figure 9). This is consistent, since Gabor functional forms in the

spatial receptive field should correspond to Fourier transforms of these functions in

the spectral domain. Mathematically described, a sinusoid multiplied by a Gaussian

function Fourier transforms to two impulses in the frequency domain convolved with

a Gaussian (22). This convolution yields two Gaussians. Figure 10 illustrates this

mathematical process. It should also be noted that the spectral response plots were

polar and were obtained assuming polar separability of the orientation (0) and spatial

frequency (p) one-dimensional functions (12:1223).

These results further support the idea of stimulus specificity of neurons in

the visual cortex (4, 9, 10, 11, 12, 26). Responses to varying sinusoidal grating

stimuli indicate that neurons segment on the image features of spatial frequency and

orientation (12). Jones et al apparently define spatial frequency as pitch distance

between edges. In this definition, they do not include the angular orientation of the

parallel grating edges, considering orientation a separate feature (12).
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els Neuronal Spectral Re.-ponse (6)
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2.1.-4 Gray and Singer In 1988, Gray and Singer documented experimen-

tal data suggesting that "local neuronal populations in the visual cortex engage in

stimulus-specific synchronous oscillations" (9:1698). Their findings, in accord with

other research cited here, were obtained from cortical measurements or, 15 adult

cats and 12 kittens, all anesthetized (9:1698). Stimuli exposed to the visual recep-

tive fields consisted of illuminated line segments at varying orientations, velocities,

and direction of movement (9:1699).

Gray and Singer observed stimulus-specific responses in the test neurons (9).

Perhaps even more impressive was their observation that, for a given stimulus, "ad-

jacent neurons" fired "simultaneously and in synchrony" (9:1701). Equally signif-

icant was their observation that different groups of firing neurons, "spatially sep-

arated" (9:1702) on the cortex by up to 7 mm, oscillated in phase, provided they

selected for the "same orientation specificity" (26:298).

Assessing Gray and Singer's results, Stryker summarized, "receptive fields of

the neurons at the two sites had a common orientation specificity and were aligned

so that they could be stimulated by a single long bar of light" (26:298). Stryker

further suggested that the "global property of the stimulus" (26:298) affected firing

correlations between spatially separated groups of neurons. He concluded this since

one long light bar, rather than two separate light bars of the same orientation, yielded

synchronous firings of spatially separated cortical areas (26.298). Evidently, the two

separate bars "did not bridge the gap between the two receptive fields" (26:298).

Gray and Singer suggested that "adjacent neurons" firing "simultaneously and

in synchrony" for a specific stimulus are "confined approximately to a single orienta-

tion column" (9:1701). They also stated that, based on measurements with multiple

electrodes, "synchronization across spatially separate columns does occur" (9:1702).

Stryker deduced that many "neurons in the visual cortex," responding simultane-

ously to the same stimulus, can better convey their message to higher cortical areas

by broadc,.sting "in unison" (26:297). Such phenomena may provide ideas for an
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enhanced neural network model as "the phase of the oscillatory response may be

used as a further dimension of coding" (9:1702). The concept of phase synchrony

essentially "binds" local stimulus details into larger, global feature aspects.

2.2 Biologically-Motivated Neural Network Models

2.2.1 Kammen, Holmes, Kch Based on Gray and Singer's observations of

cortical processes, Kammen, Holmes, and Koch subsequently proposed two algo-

rithmic models to mathematically simulate phase locking among groups of neu-

rons (15). Their first model incorporated a "one-dimensional array" of symbolic

cortical columns, each "coupled" to its two "nearest neighbors" (15:1-182). Their

second model connected each cortical column to "a common comparator which feeds

back a function of the average phase" (15:1-182). 3ee Figure 11 for these represen-

tations.

Analyzing their first model, the one emulating "nearest neighbor couplings,"

Kammen et al determined that it did not successfully phase lock mathematical

inputs (cortical columns) "separated by large numbers of inactive (unstimulated)

units" (15:1-182). Increasing the number of cortical units, or lengthening the one-

dimensional array, can be expected to exacerbate the problem. It is apparent that

this algorithm did not accurately model the biological phenomena observed by Gray

and Singer (15).

The second model, however, successfully coupled the phase and firing frequency

of the excited (stimulated) cortical columns, and moved them out of phase (and off

frequency) with the unstimulated columns (15:1-182). More succinctly, Kammen et al

determined that "not only do the excited units fire at the same rate, but they remain

exactly in phase regardless of their geometrical arrangement or separation" (15:1-

182). Recall that this model implemented a common comparator for average phase

feedback (15:1-182). These results offer further direction for a phase-synchronous,

enhanced hardware neural network model.
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Nearest-Neighbor Model

Figure 11. Phase Synchronous Models: Nearest Neighbor and Common Compara-
tor (15:1-183)
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2.2.2 Daugman Recognizing the importance of Gabor functions in modeling

neuronal receptive field responses, Daugman developed a three-layer neural network

to output Gabor transform coefficients for input images. The image inputs were 2-D

intensity functions mapped across an array of pixels. (3)

According to Daugiman, typical images are characterized by localized regular-

ities in texture, brightness, and edge continuation. These consistencies make such

images good candidates for minimizing their coding information. Daugman's neural

network accomplishes this by transforming a 2-D pixel array intensity function into

Gabor coefficients. This algorithm reduces the amount of electronic data storage

needed to describe and reproduce an image. (3)

2.2.3 High-Order Artificial Neural Networks

2.2.3.1 Basic Theory High-order networks feed vector inputs via high-

order polynomial functions into a single layer of artificial neurons. Compared to

standard muitilayer networks, high-order networks more efficiently "carve out" com-

plex, functional decision regions within feature spaces for some problems. Standard

first-order bz.ckpropagation networks implicitly implement higher orders in their hid-

den layers of artificial neurons. However, the standard feedforward networks' added

layers and additional weight modiaications may result in slower convergence toward

problem solutions. (8, 21)

2.2.3.2 Meador Assuming the existence of axon-to-axon connections

in biological neural networks, Meador developed single-layer, high-order, artificial

neural networks to model modulations, or multiplicative interactions, among ax-

ons. Meador indicated that axo-axonic interconnections are physiologically docu-

mented, yet have not been widely discussed in artificial neural network literature.

For relative simplicity, Meador limited the scope of his models to implement the

widely recognized "axo-dendritic" and the lesser acknowledged "axo-axo-dendritic
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synapses." (19)

Limiting his mathematical algorithms, Meador modeled second-order connec-

tions in his networks, although higher order connections are possible to imple-

ment (28). Meador's first algorithm, an axo-axonic model with adjustable weights

for linear and second-order polynomial input functions, appeared as the following

equation (19:3):

I I

net, = di d(1 + ja,,ikxk)xj (1)
j=1 k=-1

In Meador's equation shown above, 1 < i < N, where I is the number of inputs,

N is the number of neurons, each x is an input vector component value, di, the linear

connection weights, and aiik the higher order (axo-axonic) weight factors. Meador

revised this equation to an equivalent form he termed "a second-order quadratic

interconnect" (19:4):

I I I

net, = • Dixj + • Aipxkx (2)
j=1 j=1 k=1

In comparison to the first equational model, this equation is characterized by

a different weight space where Dij = dii and Aiik = diiaijk (19:4). To modify the

network weights, Meador used a gradient-descent method. This mathematical rule

minimized the squared error (difference) between the desired output and the actual

output for input vectors.

Testing the high-order networks on thrfe quadratically separable problems (in-

cluding the XOR problem), Meador found that the axo-axonic weight set converged

to solutions faster than the model implementing quadratic interconrect weights.

However, both of these single-layer, high-order networks converged faster, and with

greater probability, than a standard, multilayer backpropagation network with no

high-order inputs (19:15).
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2.2.3.3 Tenorio and Lee Similar to Meador's model, Tenorio and Lee

developed a "Self Organizing Neural Network" (28). This algorithm modified in-

ternal weights, and selected appropriate linear and higher order functions to solve

identification and classification problems (28:57). They tested the algorithm with a

MacKay-Glass differential equation (28).

Tenorio and Lee did not use a mean-square error method for weight adjust-

ment. Instead, supervised network learning was achieved with a "modified Minimum

Description Length (MDL) criterion," also referred to as "Structure Estimation Cri-

terion (SEC)" (28:58). This weight modification scheme mathematically selected a

network function ba.-,d ,n simplicity and best estimate. The transfer function of

the network wav ccTnposed of a combination of linear and higher order functional

inputs. (28:58)

As the mathematical basis for their algorithm, Tenorio and Lee cited the

Kolmogorov-Garbor polynomial, as shown in the following equation (28:57):

y == ao + •, aixi + E_ E aj xixj + .. (3)

Variables x and y represent system input and output, respectively (28:58). Note the

mathematical similarity to Meador's previously cited approach (19). Like Meador,

Tenorio and Lee opted to simplify their model by limiting high-order functions to

quadratic polynomials (28:58).

To update weights, the model was trained with the following equation foi

MDL (28:60):

M'DL = -log f(x I 0) + 0.5k log N (4)

"where .f(x I 0) is the estimated probability density function of the model, k is the

number of parameters, and N is the number of observations" (28:60). Tenorio and

Lee contended this was a viable model based on successful prediction of the MacKay-

Glass equation (a chaotic time series). They also noted the trade-off between level
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of complexity and modeling accuracy for the algorithm (28:63).

2.2.8.4 Zhang and Miller Zhang and Miller proposed a high-order net-

work scheme aimed at improving a model developed in 1987 by Heilenberg. Heilen-

berg's model was designed "to explain how sensory maps could enhance resolution

through orderly arrangement of broadly tuned receptors" (29:444). In essence, the

model was intended to mathematically emulate the phenomenon of hyperacuity, a

condition attained by a system resolving inputs to detail finer than "inter-receptor

spacing" (29:444-445).

While Heilenberg's model employed only linear weights, Zhang and Miller in-

cluded Hermitian polynomial weighting functions, converting the Heilenberg algo-

rithm to a higher order version (29:445-446). They showed that the improved algo-

rithm successfully modeled hyperacuity for an array of receptor inputs with a defined

inter-receptor spacing (29).

The general form of the Hermitian polynomial, Hp(t), where p is the order of

the polynomial, is represented as:

H,(t) = (-l)pe"t2 e-2 (5)

2.2.3.5 Narnatame Namatame presented a unique high-order network

employing Chebychev polynomials as inputs to a multilayer system (Figure 12). The

network was designed to learn nonlinear continuoas functions. Namatame contended

that "first-order multi-layer networks and the high-order flat networks without hid-

den units ... are inadequate to generalize and to learn the nonlinear structures un-

derlying the continuous mappings" (20:1-682). Namatame demonstrated the use of

nonmonotonic Chebychev polynomials feeding three layers of artificial neurons (20:1-

682).

Narnatame is in accord with previously cited research regarding the improved
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output

nonmonotonic functional inputs

Figure 12. A Multilayer High-Order Neural Network (20:1-683)

capabilities of high-order networks over standard first-order, multilayer models. How-

ever, Namatame's use of multiple layers in conjunction with high-order functional

inputs deviates from the "classical" single slab versions of high-order implemen-

tations. As the results suggest, for learning and predicting nonlinear continuous

functions, the added aspect of multiple layers may prove a superior approach for

high-order networks. (20)

The Chebychev polynomials (Figure 13), of order i, are defined for 0 < x < 1

in the following general equation (20:1-681):

()W = cos (i arccos (2x - 1)) + 1 (6)
2
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f(z,2) / f(x,3) ,
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Figure 13. Examples of Chebychev Polynomials
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2.2.3.6 Le. Cun An image recognition algorithm, tested ou handwritten

aumerical digits, was developed by Le Cun et al. The algorithm employed multiple

layers of nodes in a network scheme designed for "extracting local features and

combining them to form higher-order features" (16:44). Handwritten digits for the

data set were obtained from zip code numerals off addressed envelopes processed by

the US Postal Service. The training set was comprised of 7291 digit exemplars while

2007 digits were segregated for the test set (16:41).

Each input image was mapped on a 16-by-16 pixel array. The first layer of

nodes was organized into twelve groups of 8-by-8 node arrays. Weights were con-

strained for each group of nodes, with each node "viewing" a 5-by-5 pixel block from

the input image. With 64 constrained weights per node group, and unconstrained

thresholds, weight updating was performed via backpropagatibn using a computed

average error (16). This architecture is similar to Fukushima's hierarchical neocog-

uitron except that it is supervised and not binary (7).

The next layer of nodes consisted of twdve groups of 4-by-4 node arrays, each

node being fed from a 5-by-5 node block from the previous layer. Outputs from this

layer were fully connected to a layer of thirty hidden nodes, each subsequently feeding

all ten output nodes (16). Figure 14 diagrams the network architecture developed

by Le Cun et al. Following training, this network achieved 95% accuracy on the test

data (16:45). This algorithm also inspired, in part, tI, proposed image recognition

network developed in this thesis and detailed in Chapter III.

2.3 Literature R1 eview Summary

Neurophysiological researchers cited in this literature review have observed a

variety of functional measurements in the neomammalian visual cortex. Their obser-

vations lend credence to the proposed phenomena of stimulus specificity and phase

synchronous firing of groups of neurons, and the potential use of Gabor functions

in modeling neuronal (spatial) receptive field profiles. Meador, whose high-order
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Figure 14. Le Cun's Digit Recognition Network (16:44)
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networks outperformed standard first-order networks, also cited biological literature

supporting axon-to-axon connections among neurons. It is possible, however, that

some of these biological measurements are artifacts representing some random or

systematic noise in the experimental processes, rather than observations of actual

cortical phenomena.

To seg,;ient image features, Ayer and Fretheim independently correlated image

scenes with Gabor functions of differing spatial frequencies and variances (1, 6). The

visual cortex may possibly employ a similar process for discerning texture (14).

Based on the assumption that the cited biological observations represented

real processes in the "wetware," this thesis research sought to explore new aspects of

neural network algorithms with ideas gained from measured cortical processes. This

did not assume a comprehensive understanding of cortical functioning. Rather, this

work attempted to unify a limited body of biological, mathematical, and network

algorithmic knowledge to develop an improved model for solving certain classes of

engineering problems.

This chapter discussed and integrated experimental work published by several

biological and artificial neural network researchers. The foilowing chapter covers the

methodology and approach used in this thesis.
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III. Methodology

Citing the work of several n•,urophysiological researchers, Chapter II covered
a subset of observed biological processes in the mammalian visual cortex along with

recent research into artificial neural network algorithms. Specifically noted were
the phenomena of stimulus-specific responsiveness and phase-synchronous firing of

neurons in the visual cortex, the semblance of Gabor functions in characterizing

neuronal receptive fields, and "axo-axonic interconnections" (19) in biological neural

networks. This thesis work sought to emulate some of the simple aspects of these
biological phenomena in software algorithms designed for feature extraction and

image classification (target identification).

This chapter covers the development and testing of proposed software-based
algorithms. One of the discussed solution methodologies employs multiple Gabor

function correlations across image pixel arrays. This process, intended for feature

extraction within an image, may emulate stimulus-specific responsiveness of some

cortical neurons to unique local spadial frequencies. Also discussed is a local av-
eraging routine intended to model phase-synchronous neuronal firing in the visual

cortex.

The first section of this chapter outlines the design and testing of high-order

classification engines. Operuting on extracted features of segmented images, these

classifiers are theoretically analogous in function to higher cortical associative pro-

cesses employing axo-axonic connections among neurons.

3.1 Investigation of High-order Neural Network Classifiers

The first phase of this work entailed the development and testing of single-

layer, high-order artificial neural networks (see Appendix A for software code). This

involved the software implementation of second and third-order network algorithms.

Written in standard C programming language and compiled and run on two ELXSI
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Figure 15. Two Segregated Classes of the 2-D XOR Problem

6400 computers, these networks were tested on three separate classification problems

to assess their learning performance (speed of solution convergence and maximum

achieved accuracies). The purpose of this segment of the research was to determine

the potential usefulness of high'order neural networks as classifiers for a variety of

problems, including image recognition.

The test problems consisted of data sets for the 2-D exclusive-or (XOR) prob-

lem (Figure 15), the 2-D "mesh" problem (Figure 16). and Ruck's calculated mo-

ments of pixel data froir military vehicle images. The mesh data, consisting of 1000

vectors, was obtained from Tarr, whose previous work at AFIT used the data to test

multilayer perceptron classifiers. The image moment data, consisting of 81 vectors,

was computed by Ruck from pixel data and used in testing the capabilities of mul-

tilayer perceptrou classifiers by Ruck and Tarr at AFIT. The computed moments

were position, scale, and rotation invariant.
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Figure 16. Four Segregated Classes of the 2-D Mesh Problem (24:60)
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3.1.1 Algorithm for the High-order Classifiers' The networks developed for

the second and third-order classifiers were similar with a few exceptions. The second-

order network fed linear and second-order combinations of feature inputs, each multi-

plied by separate weighting factors, to the sigmoid function comprising each artificial

neuron. The third-order network fed linear, second-order, and third-order combina-

tions of feature inputs to each artificial neuron. The Kolmogorov-Garbor polynomial,

shown in Equation 3, depicts a generalized mathematical version of the summation of

these high-order input combinations, The polynomial summation, added to a thresh-

old value (0) for each artificial neuron, was fed to the sigmoid function internal to

each artificial neuron.

Second and third-order combinations of feature inputs are simply the multiplied

exponential and cross-product combinations of the vector components. The sigmoid

functions to which the summation of these first, second, and third-order combinations

were fed may be represented by:

1• = 1 + e-&•+ 0 -) (7)

where yn is the sigmoid output and 0,, the threshold for the nth artificial neuron.

The variable a represents a truncated form of the Kolmogorov-Garbor polynomial.

For the seccnd-order network algorithm:

a = w,i,± + w,3 x,; (8)

For the third-order network algorithm:

a = Zw,x, + EEw,,xzj + w,,kx, (9)
s s j . j k

The array variable x represents the vector components, or feature inputs, and w is a

corresponding array of weight factors for feature inputs and second and third-order
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multiplied combinations of the feature inputs.

The software programs were written allowing the user to specify key parame-

ters for each compiled run. These variable parameters included the number of output

classes for the problem, the number of exemplar vectors, training vectors, and com-

ponents (features) per vector as dictated by the data set, the number of training

iterations run between each accuracy test of the network, and the total number of

training iterations to be run and plotted. Since these networks consisted of a single

layer of artificial neurons, the number of output classes, number of output neurons,

and total number of neurons were all equal.

The user also specified the learninf rate, 77, and the name of the data file

to be accessed by the program. There was also a "switch" in the program which

could be set to divide the learning rate by the fan in, or number of inputs fed to

each artificial neuron's sigmoid function. Dividing 77 by the fan in may aid network

learning when relatively large numbers of inputs are fed to the artificial neurons (21).

When not selected, the fan in variable was bard set to one so that 77 was not divided

by the number of inputs. This was the case for test running the 2-D XOR and mesh

?roblems. For the twenty-two-dimensional Ruck data, however, 1r was divided by the

fan in due to the vastly increased number of sigmoid inputs created by the higher

dimensionality of the data vectors.

After opening the data file and loading into storage arrays the flag (index)

number, feature component values, and desired output class for each vector, a pro-

gram module calculated the number of second-order and third-order multiplicative

combinations for each vector's components. These calculated numbers, used for dy-

namically allocating storage arrays for second and third-order input combinations,

are functions of the number of features per vector. Having correctly allocated the

array sizes, the program multiplied out the second anid third-order combinations of

the features and stored these high-order input values in the arrays.
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Figure 17. Second-order Network Algorithm with Two Feature Inputs

To save memory, the algorithm avoids the commutative redundancy of multi-

plied input combinations. For example, for two feature components, zx and x2, the

second-order network stores and uses the inputs xj, x 2 , X4 X2, and x1 * X2 (Figure 17).

Each squared exponential is calculated and used only once and the multiplied combi-

nation X2 * X1 is not calculated. By eliminating the redundancy of commutativity, the

algorithm saves a huge number of floating-point operations and substantial memory,

particularly when operating on data vectors of high dimensionality.

Initial testing of the network algorithms on the mesh problem data resulted

in erratic fluctuations of accuracy during the learning process. This occurred us-

ing learning rates of G.35 and 1.0. The seemingly random vacillations iu learned

accuracy indicated that perhaps the networks were not ;earning to any degree. It

was postulated that the disappointing results were due to data inputs that were

not normalized, including the higher-order multiplied combinations derived from the

first-order inputs. Second and third-order multiplications of fractional input values

yield relatively small high-order inputs. Miniscule high-order inputs may contribute

little to weight updating and learning, thus the need for normalization.
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Normalization program modules were subsequently developed and inserted into

the networks to vertically normalize the first, second, and third-order vector data

arrays. The mean, p, and standard deviation, a, were calculated for each feature

component column of the exemplar vectors. All first, second, and third-order vector

components, zX, for exemplar and test vectors, were then vertically normalized using

the equation (21):

x,(normalized) = xi - A (10)
or

After completing the initialization routine of the high-order algorithms, the

array of 0 values, one for each neuron, and the arrays of weight values, one for each

first, second, and third-order input for each neuron, were filled with random floating

point numbers between -0.5 and 0.5. These values lie within the region of greatest

change in the sigmoid function. For each network run, the random function generator

was itself randomly seeded using the computer's time clock. This ensured a new set

of initial weights and thresholds for the start of each learning run.

During the training loops of the second and third-order algorithms, exemplar

vectors from the data set were selected in random sequence for exposure to the

network. For each exemplar vector shown to the network, inputs consisting of the

vector's components and their higher-order combinations were multiplied by corre-

sponding weight factors and fed to the sigrnoid functions comprising each neuron.

Based on the input vector, this yielded a unique output value, y, for each neuron. A

desired output, d, was assigned to each neuron such that d = 1 only for the neuron

corresponding to the output class of the presently run exemplar vector. For the

other neurons in the layer, each of which selected for other classes, the algorithm set

d = 0. For these single-layer networks, the number of neurons equaled the number

of output classes for a problem. A neuron would output high to indicate network

selection of its corresponding output class.

The error, Aw, was calculated for each neuron using the actual neuron output,
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y, and its desired output, d, for each exemplar vector. The well-known gradient error

equation for the sigmoid function is:

Aw = y * (I - y) * (d-- y) (11)

For each neuron, each weight value, wi, was updated via the equation:

wj(updated) = wi + 77 * Aw * zi (12)

where xi represents the corresponding input for the weight (including higher-order

inputs for updating higher-order weights). As previously mentioned, rt may be di-

vided by the fan in to aid network learning, particularly when many inputs are fed

to the artificial neurons (21). Threshold values (0) for each neuron were updated

using the same equation, where the value of xi was set to one.

Through successive training iterations, or sequential random exposures to ex-

emplar vectors, the process of weight updating serves to train a network. If a

paradigm is capable of using the input vectors' features to converge to a network

transfer function that accurately distinguishes each class, the network has success-

fully learned the problem.

To assess the degree of learning achieved by the networks on each problem, a

test loop sequentially accessed all designated test vectors from the data set. The test

vectors were originally segregated from the training vectors and were thus "unseen"

by the network during training. This was required to truly determine the generalizing

capability of the trained network.

During testing, each test vector's components and higher-order combinations

were fed once through the network algorithm. This entailed multiplying each input

by its corresponding weight factor stored in memory, summing the results, adding

corresponding neuron threshold values, and feeding the summation through the sig-
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moid function of each artificial neuron. This process was mathematically identical to

determining the output, y, for each neuron from the exemplar vectors during train-

ing. However, in this case, there was no subsequent updating of weights to further

train the net. During testing, the resulting outputs of the retwork for all test vectors

were tallied to determine the number of correct class selections, yielding a percent

accuracy for the present state of the network (determined by its stored weights).

Following a testing session, which culminated with a stored value for network accu-

racy, the progranm returned to the training loop to continue updating the weights

based on additional exposures to exemplar vectors.

For testing purposes, the criteria for determining a correct network response to

a test vector required that the in-class node output a value greater than 0.8 and all

other nodes (corresponding to different classes) output less than 0.2. This criteria

is based on the networks' estimation of the conditional probability densities (25).

Note that for khe employed sigmoid function the output range was between 0 and 1.

Network accuracy was calculated by dividing the total number of test vectors into

the number of correct network responses.

Each full network run yielded a series of accuracy values for training iteration

intervals, reflecting network learning as a function of exposures to training data.

The software programs averaged the results of ten separate learning runs of each

network on each problem to create the plotted results shown in Chapter IV. For

the third-order network operating on a statistically normalized version of Ruck's

moment data set, results were averaged from only five runs to limit the extensive

computation. Averaging the results from several runs served to smooth any unique

convergence results caused by a specific combination of initial random weights for

any one training session.
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3.2 Development of an Image Classification Network

Several versions of a biologically-motivated image classification network were

developed and tested in the second phase of this thesis. The network algorithm was

inspired by the biological research observations of cortical functioning detailed in

Chapter II and, in part, by research conducted by Le Cun et al (M6). The network

operated on a data set consisting of segmented pixel arrays of forward-looking in-

frared (FLIR) images of tanks, trucks, target boards, and clutter. The first layer of

the network essentially correlated each image with four Gabor functions of differing

angular orientations. This process was intended to emulate, in a highly simplified

model, the stimulus-specific responsiveness of biological neurons in the visual cortex

to varying spatial frequencies, or textures. Chapter II discussed neurophysiological

evidence of cortical neurons functioning as Gabor function detectors.

The second layer of the image classification network performed a local averaging

routine on the outputs of each Gabor "orientation column." In a simplistic way, this

process mathematically modeled phase synchronous firing of neurons in the visual

cortex, an o0 ierved biological phenomena discussed in Chapter II. This higher layer

was employed to glean larger global properties from an input image, rather than

smaller stimulus details and noise extracted in the first layer of the network.

Processed outputs from the second layer, serving as extracted features of the

input pixel data, were fed to the final output layer of the network for classification.

The output layer consisted of four sigmoidal nodes, each representing one of the

four desired output classes. Subsequent versions of the network modified the final

output layer to find a preferred classification scheme. Two network variations em-

ployed high-order networks at the output layer to determine if various second-order

combinations of extracted features could successfully separate the data. Another

version implemented a multilayer perceptron with a variable number of hidden layer

nodes. Final network versions statistically normalized the features extracted from

the Gabor wavelet correlations and local averaging routine, feeding tjie results to
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the output classification layer. A diagram of the basic feature extraction algorithm

(without details of each output layer variation for each network version) is depicted

in Figure 18.

3.2.1 Production of the Image Data Set A data set was developed for testing

the image classification network. The data set consisted of integer gray-scale values

from pixel arrays representing 88 separate FLIR images. Using software developed

and modified by Ayer (1) to window and excise pixel arrays of images contained

within larger scenes, 21 tanks, 23 trucks, 23 target boards, and 21 clutter images

were segmented from FLIR scenes used by Roggemann in earlier work at AFIT.

Ayer's software was run on VMS machifies in the AFIT Graphics Laboratory to

extract the 88 images and convert each to a list sequence of integer gray-scale pixel

'values ranging from 0 to 255. Each image was windowed within a rectangular pixel

array of 63 rows by 128 cclumns, yielding 8064 integer component values per inrage.

Images were selected to minimize variations in size and were roughly centered and

positioned upright within the extraction window.

Each of the 88 segmented images was assigned a unique index number, from 0

through 87, inserted before the first of the 8064 pixel values comprising each image's

list. A class identification number was then appended to the tail of each image's

numerical list to identify the image class: 0 for target board, 1 for clutter, 2 for tank,

or 3 for truck. Each image's completed sequence of numbers consisted of 8066 integers

including an index number, 8064 gray-scale pixel values, and a class identification

number, in that order. The 88 separate numerical sequences representing the 88

segmented images were finally ported to one of AFIT's ELXSI 6400 computers and

concatenated into one large file comprising the data set. The numerical d ta set for

the FLIR images was thus structured in a "vector-style" format for insertion into

the network software.
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Figure 18. Biologically-Motivated Image Classification Network Algorithm
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3.2.2 The Biologically-Motivated Image Classification Algorithm The soft-

ware code for the image classification algorithm was written in C programming

language and compiled and run on two ELXSI 6400 computers at AFIT. Programs

were written allowing the user to readily vary the number of exemplar versus train-

ing images designated from the input data set, the number of training iterations

run between network accuracy tests, the total number of training iterations, and

the learning rate, 71. Based on the FLIR image data set produced for this thesis,

the number of numerical components per input image was hard set at 8064. The

number of exemplar vectors and test vectors were both set at 44. Learning rates

used for various program runs were either 0.35 or 1. The software did not store and

average results from multiple runs due to the computationally intense nature of the

algorithm and time constraints on the project.

Program arrays for the index, class, and image gray-scale pixel values were first

loaded from the data set. For each program run, the random function was seeded

from the computer's time clock. Arrays for weights and thresholds were filled with

random floating point values between -0.5 and 0.5, as values in this range fall within

the region of greatest change for the sigmoid function. To preclude saturation of

the sigmoid function, these weights and thresholds, along with the learning rate, 77,

were subsequently divided by the node fan in, counteracting the "explosive" effect of

huge numbers of node inputs. Also, as detailed in a separate section of this chapter,

four arrays of constrained hard-wired weight's for the first processing layer were filled

with 2-D discrete Gabor functions.

Training and testing loops contained identical network propagation routines.

The training loop, randomly selecting image exemplars for network propagation,

additionally contained standard backpropagation routines for updating weights. The

testing loop sequentially accessed designated test images, all "unseen" by the network

during training, and determined if the network's propagated outputs matched the

desired classes. Correct test outputs were tallied and divided by the number of
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test images, yielding a percentage for network accuracy. A correct network output

was defined by an in-class node output greater than 0.8 and all other node outputs

less than 0.2 (for the output layer). Printouts for each network run displayed a

series indicating the cumulative number of training iterations and the corresponding

network accuracies. Specific details regarding the software are contained in Appendix

B.

The proposed propagation algorithm was intended to emulate, in a simple way,

observed cortical phenomena that might relate tc the processing of visual information

in the brain. Each input image was "blocked off" into 8.by-8 pixel arrays to mimic

the limited receptive fields proc.essed by neurons in the visual cortex. Using a 50%

overlap in both image dimensions among these "receptive fields," an input image

of 63 rows by 128 columns of pixels was segregated into 434 overlapping "receptive

fields" (14 rows by 31 columns). Each 8-by-8 pixel "receptive field" was processed

by a separate node in the first processing layer of the network. This was meant to

imitate a receptive field "viewed" by a biological neuron within a cortical orientation

column of the risual cortex.

An engineering judgement choosing the 8-by-8 size of the segregated pixel

blocks was made based on the observed size of physical features in images from the

data set. Ideally, the "receptive field" sizes were intended to capture local texture

changes within the different images that might aid the network in discerning the

classes. Also, due to the computationally intense nature of the proposed network, the

50% overlap among "receptive fields" was chosen to limit the number of processing

nodes employed at higher levels of the algorithm. This 50% overlap could be used

as the "mother wavelet' for a multiresolution hierarchy.

Processing an input image through the first processing layer of the network

entailed the correlation of each separate "receptive field" with four discrete Gabor

function wavelets. A correlation multiplied each of 64 constrained hard-wired weights

representing a Gabor waveict by the correspcnding pixei values in a 'receptive field"
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and summed the resulting 64 products. Details regarding these Gabor function

representations of the constrained weight sets are discussed in a later section of

this chapter. It is also noteworthy that each "receptive field" was first LaInbertized

and contrast normalized prior to correlation with the Gabor functions. Details of

the contrast normalization routine, along with justification for employing it in the

algorithm, are also covered in a later section of this chapter.

The correlated result of each "receptive field" with each Gabor function was

fed to a unique sigmoidal node. The network structure of this processing layer thus

consisted of 434 nodes for each of the four Gabor functions. Grouping 434 nodes, one

per "receptive field", for each Gabor function mimics the organization by "orientation

columns" of neurons in the visual cortex. From this layer, the sigmoid outputs from

each Gabor orientation group fed a subsequent layer of nodes, also segregated into

four groups to separately process each Gabor orientation. This subsequent layer of

nodes, linear rather than sigmoidal functions, served to emulate the phenomena of

j..ase synchronization of neuronal firing discussed in Chapter II.

The phase synchronization layer, with four groups of nodes uniquely process-

ing the corresponding four Gabor orientation groups, contained 270 nodes per group.

Each node in this layer served to average the outputs of 5-by-5 blocks of nodes from

the Gabor function layer below. Just as the Gabor correlation layer preserved the

2-D locational nature of the image input data in its node arrays, the phase syn-

chronization layer also preserved the 2-D locational information in processing 5-by-5

node blocks from the Gabor correlatiun layer. The 5-6y-5 node blocks from the

Gabor correlation layer, with maximum overlap (shifting one node in each dimen-

sion), yielded 10 rows by 27 columns of blocks per Gabor group. Each linear node

in the phase synchronization layer averaged a separate block of 25 wdes by comput-

ing the arithmetic mean of their outputs. The resulting layer structure consisted of

four groups of 270 nodes per group, each node computing a unique average otput

from the layer below. This created 1080 output values representing extracted fea-
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tures transformed from the original pixel data for each image. These 1080 numerical

outputs (per image) served as inputs to the final classification (output) layer of the

network. Through its local averaging routine, the phase synchronization layer was

intended to "bind" local details into larger, global features of an image. Figure 18

illustrates the propagation hierarchy through the network layers.

The final output layer of the network consisted of four sigmoidal classification

nodes representing target board, clutter, tank, and truck, For each of these "top"

nodes, outputs greater than 0.8 were considered high (in-class) and outputs less

than 0.2 were cousidered low (out-of-class). Several different versions of the output

classification layer were tested. These network vaxiations were ,eeded to fully assess

the capability of the biologically-motivated feature extraction algorithm.

3.2.2.1 Variations of the Output Classification Layer The first network

version employed a single layer of nodes for output classification. The output layer

consisted of four sigmoidal nodes fully connected to nodes from the phase synchro-

nization layer. This configuration assumed linear separability of the features ex-

tracted from the images' pixel data.

In following the first part of this thesis work investigating high-order networks,

two subsequent versions of the image classification network implemented high-order

classification schemes. One of these versions multiplied second-order combinations of

the 270 node outputs within each of the four separate orientation groups of the phase

synchronization layer. The resulting 146,340 total multiplied combinations were fed,

along with the unmultiplied features, into all four output classification nodes in

the single-layer percep~ron. The other high-order scheme multiplied second-order

combinations of correspondirg node outputs, or locations, among the four groups cf

the phase synchronization layer. With 2700 multiplied second-order combinations,

this approach proved far less computationally intense than the previous high-order
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network version. The high-order network versions assumed separability of second-

order combinations of extracted feature values.

For more thorough testing, the network was modified to employ a multilayer

perceptron, with two layers of trained weights, as the output classification layer. The

hidden layer of the multilayer perceptron allowed for a variable number of nodes while

the ultimate output layer consisted of four nodes, one representing each class. Vary-

ing the number of hidden layer nodes provided more testing versatility by altering

the order of mathematical computation of the classifier. The intent was to variably

scale the computational complexity of the network to eventually achieve solution

convergence. Software code implementing the various network versions is included

in Appendix B.

Noting the initial failure of these classification schemes in achieving solution

convergence on the extracted features, it was postulated that these features might

require statisti-cal normalization to enable successful classification. Following the

Gabor wavelet correlations and the local averaging algorithm, a vertical normaliza-

tion routine was used to normalize, by column, the extracted feature components,

xi, of all 88 image vectors. The mean, A, and standard deviation, a, for eacl fea-

ture component column were calculated using only the exemplar vectors. All image

vector components were then vertically normalized using the equation (21):

xi(normalized) = Xi - / (13)
a

Feeding the statistically normalized feature values into the multilayer perceptron, the

most versatile of the classification schemes, the network exhibited learning with in-

creased training iterations. The statistically normalized features were also fed to the

high-order network version multiplying second-order combinations of corresponding

node positions among the four orientation groups. This high-order network ver-

sion also exhibited learning on the normalized features. Detailed result of network
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testing are covered in Chapter IV.

3.2.2.2 Lambertization and Contrast Normalization of Pixel Values To

ensure network learning of relative differences among pixel values, rather than of

absolute pixel values in an image, a normalization routine was implemented to op-

erate on 8-by-8 grouped blocks of pixel values prior to network processing. The

8-by-8 pixel array blocks were those sectioned off as "receptive fields" for the Gabor

function detectors in the first network layer. To simplistically emulate biological

retinal preprocessing, normalization of the gray-scale pixel data was accomplished

using Lambertization and contrast normalization algorithms (13, 14).

Employing each 8-by-8 "receptive field" as a 2-D windowed region of pix-

els within the image, Lambertization was accomplished by computing the average

brightness, A, of the 64 pixel values within each window such that:

1 64 (14)
A = -"" * E- ,(4

where xi represents each pixel value in the 8-by-8 window. A local contrast, xzc,

was then computed for each of the 64 pixel values by finding the difference between

the average window brightness and each pixel value:

xLC = xi - A (5)

The Lambertization algorithm was used to preserve local changes in image intensity

while eliminating systemadic brightness variations. (13, 14)

Following LambertizatioL, contrast normalization was used to mathematically

convert vector length ("energy"), E, to unity. First, vector length was calculated by:

E = xLG) 2  (16)
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Each normalized pixel value, xi(normalized), was then calculated by:

xi(normalized) = I - (17)

This contrast normalization procedure was used to enhance contrast where it was

too low within the image and reduce contrast where it was too high. (13, 14)

3.2.2.3 Discrete 2-D Gabor Functions Comprising First Layer Weights

The network's first layer of nodes, consisting of four groups of 434 sigmoids per

group, processed correlations of four unique Gabor functions with each of the 434

"receptive fields" sectioned off within each image. The 2-D Gabor functions chosen

for implementing the first processing layer of the network were 8-by-8, discretized

wavelets possessing the same periodicity but characterized by different angular ori-

entations (0, 45, 90, and 135 degrees). The 64 values corresponding to each discrete

Gabor function served as constrained, hard-wired weight factors for inputs feeding

the sigmoids within each Gabor orientation group. The four discrete Gabor functions

were mathematically generated in software to fill four arrays of constrained weights

with values between -0.5 and 0.5. This limited the Gabor function weight values

to the region of greatest change for the sigmoid function. The following well-known

Gabor equation (14), with selected o values, was used to generate each function,
g(X, Y,f., A):

x2  y2

g(x, y, fr, f11) = 0.5 * exp[-7r * +/+- (• * cos[2 * r * (f, * x + fy * y)] (18)

where parameters f. and fv represent spatial frequencies covering two dimensions

and input variables x and y were each discretely varied from -0.7 to 0.7 in increments

of 0.2 to fill the 8-by-8 Gabor function weight arrays. Figure 19 depicts a plotted

example of a Gabor function generated in this manner.

The four different Gabor orientations were uniquely produced by varying the
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Figure 19. Plotted Exanple of a Mathematically Generated 8-by-8 Discrete Gabor
Function

combination of the f, and fy parameters inserted in the function. For a wavelet of

0 degree orientation, f., = 1 and fy = 0, whereas a Lwavelet of 90 degree orientation

was produced by f., = 0 and fy = 1. Wavelets at 45 degrees and 135 degrees,

possessing the same spatial periodicity as the 0 degree and 90 degree wavelets, were

generated by combinations of f= = 1.4142 with fy = 1.4142, and f, = 1.4142 with

fy = -1.4142, respective!y.

This chapter covered the details of the proposed high-order and image classi-

fication network algorithms. The following chapter discusses the testing results and

f erformance of these networks.
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IV. Results

4.1 High-order Network Perfcrmance Results

Chapter III covered details of the algorithms for the second and third-order

network classifiers. The following plots depict the learning performance results for

both of these networks applied to the three test classification problems. Results for

the second and third-order networks, each tested using two different 77 values, were

plotted separately. Based on previous aeural network research at AFIT, 77 = 0.35 and

S= 1.0 were selected as lea,'ning rates for testing each network (21). The following

plots show the --veraged results from multiple runs for each network on each test

problem.

.4.1.1 2-D XOR Prob.em Network learning performance results for the XOR

data are depicced in the following plots. While both networks eventually converged

to 100% accuracy, the second-order network outperformed the third-ordei network,

reaching maximum accuracy in far fewer trainirg iterations for a given r7. Also, for

either network, a greater q yielded moe rapid solution convergence.

It is noteworthy that, for the XOR problem, the higher-order networks did not

seem to outperform standard feedforward, multilayer perceptrons trained through

backpropagation. Research by Tarr showed that, for the XOR problem, a multi-

layer perceptron network achieved 100% accuracy in 1300 training iterations. Tarr's

algorithms employed sigmoidal nodes and a learning rate of r7 = 0.3 for backpropaga-

tion training. Tarr's criteria for correct network class selections required an output

greater than 0.8 for the in-class output node and outputs less than 0.2 for cut. of-class

output nodes. (27)

4.1.2 2-D Mesh Problem The following plots illustrate network learning for

the mesh problem. Neither network proved capable of learning the mesh test data to
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Second-order Network Results for XOR
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Figure 20. Second-order Network Learning XOR Data (Eta=0.35)
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Second-order Network Results for XOR
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Figure 21. Second-order Network Learning XOR Data (Eta=1.0)
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Third-order Network Results for XOR
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Figure 22. Third-order Network Learning XOR Data (Eta=0.35)
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Third-order Network Results for XOR
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Figure 23. Third-order Network Learning XOR Data (Eta=1.0)
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100% accuracy. Even after one million training iterations, the second-order network,

for 77 = 0.35 and 7i = 1.0, achieved maximum accuracies of 64% and 66%, respec-

tively. For both learning rates, the network actually approached approximate final

accuracies within 500,000 training iterations.

The third-order network yielded nearly identical results. Through one million

training iterations, the network maintained 65% accuracy for 7i = 0.35 and 67%

accuracy for r = 1.0. As with the second-order network, the third-order network

also converged to approximate final accuracies long before the millionth iteration

was reached. Research by Ruck showed that a. multilayer perceptron network trained

via backpropagation could achieve nearly 70% accuracy on the mesh data in 8000

training it,-rations, outperforming the higher-order networks investigated (24:61).

The following plots convey the convergence properties of the higher-order networks

and their limited maximum learning accuracies for the mesh problem.

4.1.3 22-D Moments of Pixel Data (Ruck Data) The following plots depict

network learning performance on Ruck's twenty-two-dimensionaI computed moments

from pixel data of military vehicle images. As with the mesh data, this problem

proved beyond the learning capabilities of both high-order networks, neither achiev-

ing 100% accuracy. The second-order network, for learning rates of 0.35 and 1.0,

maintained approximate maximum accuracies of 31% and 33%, respectively, through

one million training iterations. The third-order network maintained these same fi-

nal accuracies through 500,000 training iterations. As depicted in the result plots,

both networks actually converged to their maximum learned accuracies within a

few hundred-thousand training iterations. Tarr's research showed that a multilayer

perceotron network (with q7 = 0.3) achieved approximately 75% accuracy in 50,000

training iterations on Ruck's data (27). It was apparent that the high-order mul-

tiplied combinations of the moment features were not suitable for separating the

classes.
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Second-order Network Results for Mesh

Eta-0.35; Fan In Hard Set to 1

0.8
A
C
C 0.6

U
r
a 0.4
C
y

0.2

0 1 1 1 1 1 1 i l 1 1 1 1 I 1 1 L.4 I f 1 I J I! ;J•• _

2 12 22 32 42 62 62 72 82 Q2 102 112
Training Iteration

Iteratiors denoted In THOUSANDS

Figure 24. Second-order Network Learning Mesh Data (Eta-0.35)
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Second-order Network Results for Mesh
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Figure 25. Second-order Network Learning Mesh Data (Eta=1.0)
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Third-order Network Results for Mesh
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Figure 26. Third-order Network Learning Mesh Data (Eta=0.35)

62



Third-order Network Results for Mesh
Eta-l; Fan In Hard Set to 1

0.8-
A
C 0.6

U

a 0.4

cr
Y 0.2

1 6 11 16 21 2e 31 36 4 46 61 56
Training Iteration

Iteration* denoted In THOUSANDS
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Second-order Network Results for Moments
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Figure 28. Second-order Network Learning Ruck Data (Eta=0.35)
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Second-order Network Results for Moments
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Figure 29. Second-order Network Learning Ruck Data (Eta=1.0)



Third-order Network Results for Moments
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Figure 30. Third-order Network Learning Ruck Data (Eta=0.35)
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Third-order Network Results for Moments
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Figure 31. Third-order Network Learning Ruck Data (Eta=l.0)
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4.2 Ima,-e Classification Network Performance Results

Chapter III discussed details of the proposed image classification algorithm and

the implemented variations of its output classificatiou layer. Testing results for the

initial version of the network, employing a single layer of perceprorls as the output

classification layer, indicated that this scheme was unable to separate the features

extracted (without statistical norrnmiization) from the Gabor correlations and phase

synchronous summations. Successful learning by this network version would have

required linearly separable extracted features. All network versions %,ere tested with

learning rates of 0.35 and 1.

Both high-order versions of the image classifier also proved linable to achieve

solution convergence on unnormalized features through one m1illion training itera-

tions. As with the previous network variation, these versions employed a single

layer of peTceptrons for the output classification layer. However, the high-order net-

work implementations fed second-order multiplicative combinationz of the extracted

features to the output sigmoids. Learning success for these network versions conse-

quently required separability of the second-order combinations of the unnormalized

features.

Another network version employed a multilay2r perceptron with a variable

number of hidden layer nodes at the output classification level. Network testing

with this versatile classifier was intended to exhaust research troubleshooting po3-

sibilities at the highest processing level of the algorithm. Solution convergence was

not achieved through 200,000 training iterations, employing ten, thirty, and fifty

nodes in the hidden layer of the perceptron, and using 17 = 1.0. Fcllowing the initial

failure of this version of the network, it was postulated that extracted features might

require statistical normalization prior to processing by the classification scheme. A

subsequent version of this network, performing :tatistical normalization on extracted

features before feeding them to the multilayer perceptron, exhibited definite learn-

"ng with increased training iterations. The number of nodes in the hidden layer of
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the perceptron classifier were varied using two, three, five, ten, thirty, and fifty hid-

den nodes. Lcarning performance results from some of the single program runs are

depicted in Figure 32, Figure 33, Figure 34, and Figure 35.

The statistically normalized features were also fed to a high-order network ver-

sion inuitiplying second-order combinations of corresponding node locations among

the four orientation groups. High-order network runs learned and converged, within

a few thousand training iterations, to maximum accuracies less than 10%. This

limited performance indicated that second-order combinations of the features were

poorly suited for separating the problem classes.

The multilayer perceptron version of the network achieved a 43.2% maximum

accuracy, better than the high-order classifier, yet still limited in learning ca-.abiiity.

It is likely that the Gabor functions correlated with the input images did not possess

the optimum parameters for extracting featares to distinguish the problem classes.

An ideal set of Gabor functions, with optimum orientations, periodicities, dilations,

and window; sizes, may yield a significantly higher maximum learned accuracy for

the image data set. This is discussed further along with other recommendations in

the final chapter.

This chapter covered performance results of the neural network algorithms

developed for this thesis project. The following chapter discusses conclusions and

:,ecommendations.
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Image Classification Network Results
Using 2 Hidden Layer Nodes
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Figure 32. Image Classification Network Results: 2 Hidden Layer Nodes
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Image Classification Network Results
Using 10 Hidden Layer Nodes
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Figure 33. Image Classification Network Results: 10 Hidden Layer Nodes
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Image Classification Network Results

Using 30 Hidder Layer Nodes
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Figure 34. Image Classification Network Results: 30 Hidden Layer Nodes
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Image Classification Network Results

Using 50 Hidden Layer Nodes
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Figure 35. Image Classification Network Results: 50 Hidden Layer Nodes
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V. Conclusions and Recommendations

The previous chapter detailed testing and performance results for the neural

network algorithms developed in this thesis project. This chapter offers cornclusions

and recommendations for continued research in this area.

5.1 Investigation of the High-Order Neural Network Classifiers

The software-based algorithms for the second and third-,;rder neural networks

successfully implemented and tested both high-order classification paradigms. For

both networks, learning accuracy increased with sequential training iterations un-

til reaching a maximum accuracy for each problem. For the three classification

problems tested in this research, the second-order network generally converged to

a maximum learned accuracy in fewer training iterations, while both high-order

networks achieved the same approximate maximum learned accuracies for the test

problems. Consequently, for the classification problems investigated, the third-order

network seemed to offer no advantage over the second-order network. Furthermore,

the third-order network was more computationally intense and required significantly

more computer run time than the secod-.order n.etwork. However, further research

may prove the third-order network more capable for solving some ciassification prob.-

lems.

3oth networks converged to a learned accuracy of 100% for the XOR problem,

the second-order network learning the pioblem much faster (in fewer iterations)

than the third-order network. The high-order networks achieved maximum learned

accuracies of approximately 66% on the mesh problem and approximately 32% on the

Ruck data. Incrreasing the learning rate, Y7, merely reduced the number of training

iterations required for solution convergence.

Developing high-order algorithms beyond the third-order may produce net-

woikz more capable of solving these classification problems, although each added
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order vastly increases computational requirements. This is due to explosive growth

in the number of cross-product aad exponential combinations of data features that

must be calculated and subsequently fed to the sigmoid functions in each node. Also,

it is apparent that a high-order network, of a specific order, is limited with respect

to the classification problems it can solve.

A lesson learned during the early developmental stages of the high-order al-

gorithms was the need to normalize all inputs fed to the artificial neurons. These

included the higher-order multiplied combinations of the data feature values (cross

products and exporrentials) as weD as the data set features. If data set feature values

are relatively small (between 0 and 1), their higher-order multiplied combinations

are even smaller. Miniscule high-order inputs may not contribute to weight updat-

ing, thus precluding network learning. Prior to normalizing the high-order inputs,

network learning accuracies widely vacillated even after many training iterations,

never settling to a maximump learned accuracy. 1 hese erratic fluctuations in network

accuracy were eliminated following insertion of normalization code modules for the

high-order network inputs.

Ti'he high-order networks did not outperform feedforward multilayer percep-

trons developed by Ruck and Tarr and tested on the same classification problems.

In selecting a general classification network for learning a data set, the multilayer

perceptron may prove superior in many cases. The multilayer perceptron allows for

,-, rying the number of nodes in its hidden layers to "match" the order of a problem

and achieve maximum learning. A good, easily modified classifier should be able to

sepa,7atc output classes for many different problems, even with no a priori knowledge

of the organization of the input feature data. For example, examining a plot of the

segregated class regions of the 2-D mesh data (Figure 16), it seems likely that using

radial basis functions or log p, 0 inputs in a network might readily solve this specific

problem (13). Yet while a priori knowledge of a specific problem may be highly

useful in developing a network solution, such information is not always available,
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particularly for data sets consisting of higher dimensional vectors.

5.2 Investigation of the Image Classification Algorithm

The inability of the initial version of the image classification network to achieve

solution convergence przmpted the development of subsequent variations in the out-

put classification layer. These network variations, which included two high-order im-

plementations and a multilayer perceptron with a variable number of hidden nodes,

were employed to thoroughly test and verify inadequacy of the feature extraction

scheme by exhausting possibilities of deficiencies in the output classification layer(s).

After employing statistical normalization on extracted features prior to classification,

the multilayer perceptron and a high-order network were capable of converging to

solutions as learning followed increased training iterations.

To extract data features more suitable for distinguishing designated output

classes, future optimization of the algorithm may vary aspects of the feature ex-

traction scheme, including the discrete wavelet correlations and phase synchronizing

local averaging routine. Worthy of further exploration would be the use of discrete

Gabor functions characterized by different periodicities, orientations, dilations, and

window sizes relative to the four Gabor wavelets employed in this research. Vary-

ing these aspects in the correlation process would extract different features from

the image pixel data. Tarr proposed a methodology in his draft dissertation for se-

lecting optimum Gabor function parameters for image feature extraction (27). The

phase synchronization scheme may also be modified to implement inhibition among

the four phase synchronized groups derived from the four different Gabor function

correlations. Successful future algorithms could implement an energy thresholding

scheme in the Lambertization and contrast normalization routine, possibly optimiz-

ing the program (13). Varying the degree of overlap for pixel windows in the input

plane and node blocks processed by the local averaging routine may also serve to

optimize the feature extraction algorithm. The classifier may ultimately be modified
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to recognize probiern classes with position, scale, and rotation invariance.

This research project employed ELXSI 6400 computers, with single network

programs often rurning for days, and sometimes weeks. Due to the computational

intensity of these image classification algorithms operating on pixel data, it may be

useful in the future to run software models on a Cray computer. Furthermore, care

should be taken to avoid exceeding machine memory capacity when running intensive

processes. This problem is exacerbated when using double precision variables to

preserve critical small differences in interim program values.

A recommendation that may improve the tallying of network convergence en-

tails the use of less stringent criteria for defining correct network class responses

during testing. This thesis research defined correct network responses from the out-

put layer as the in-class node firing greater than 0.8 and all other nodes (out-of-class)

firing less than 0.2. A less exacting requirement for determining a correct class re-

sponse might be simply declaring the highest output node as the in-class node.

The FLIR image data set, consisting of tanks, trucks, target boards, and clut-

ter, proved to be a challenging classification problem. Reducing the output classes,

or running the image classification network on a more easily separable data set, may

also facilitate optimization of the algorithm.
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/* Single-layer, second-order neural network algorithm with
automatic vertical normalization of all input combos.
Results averaged over 10 runs. */

/* Name: NORMNET2.C *1

#include <stdio.h>
#include <math.h>

#define numneur 4 /* Specify total number of neurons across slab */
/* Number of neurons - number of classes */

#define numexvec 58 /* Specify number of exemplar vectors */
#define numttvec 23 /* Specify number of test vectors */
#define numfeat 22 /* Specify number of features per vector */

/* numfeat also represents # FEATURE COLUMNS */
#define numruns 1000 /* Specify number of result plot points */
#define numtrn 1000 /* Specify # training iters between test/plot */

#define eta 1.0 /* Specify training factor */

char *malloc(); /* Must define for use of malloc thru program */
/*Need for this statement is compiler-dependent*/

maino({

/* flag[] holds ID number of each data vector, class[] holds training
class associated with each data vector, x[][] holds feature
components of data vectors, quadin[][] holds second-order multiplied

combos of x values, wlin[][] and wquad[][] hold weights for all inputs
(including higher order combos), theta[] holds threshold values for
each neuron */

int *flag;
int i, J, n, randnum, numquad, qcount, fanin;
int row, col, avgrun;
int neurtcnt, numright, bigloop, trnloop, testvec, itnum;
float d, y, error, neweta, accuracy, addup;
float *x, *class, *wquad, *quadin;
float theta[numneur], wlin[numneur*numfeat], a-vrun(l0][numruns];
float finnlavg[numruns];
float sum, linsum, quadsum, mean, s, sumsqdif;

/* This module opens an input file and reads data into the
arrays flag[], class[], and x[][] */

FILE *fp;
fp-fopen("ruckdata","r"); /* Insert correct data file name here */
if(fp-NULL) exit(O);

/* Dynamic alloc of arrays prior to loading in data file values */

flag - (int *) malloc((numexvec+numttvec) * sizeof(int));
class - (float *) malloc((numexvec+numttvec) * sizeof(float');
x - (float *) malloc((numexvec+numttvec)*numfeat * sizeof(float));
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for(i-O; i<(numexvec+numttvec); ++i) (
fscanf(fp, "%d" ,&flag[i]);

for(J-O; J~numfeat; +i-J)(
fscanf(fp,"%f" ,&x[i*numfeat+j 1);

) ~/* end inner loop *

fscanf(fp, "%f" ,&class [i]);
) ~/* end outer loop *

fclose(fp);

1* This test module prints out input data containing first two and
final feature compornents of each vector; checks the above file
opening module (comment out for final program) *

1* for(i-O; i<(nuinexvec+numttvec); ++i)(
printf("For flag-%d, class-%f, check features are %f %f %f\n",
flagli], class~i]. xli*numfeat-.O], x[i*numfeat-il],
x[i*numfeat+(nuznfeat-l) 1);

1* This module establishes numbers of second-order
combos of feature inputs FOR EACH VECTOR (without commutative
redundancy). Will be used for array allocation. *

numquad-O;
for(i-l; i<-numfeat; i++)(
numquad-numquad+i;

/* Fill 2-D arrays for second order input combos:
quadin[numexvec+numttvec] jnumquad] */

quadin-(float *) malloc((numexvec+numttvac)*numquad*sizeof(float));
for(row-O; rov<(numexvec+numttvec); row++) (
qcount=O;

for(i-O; i~mumfeat; i++)(

quadinjrow*nuniquad+qcount]=x[row*nuinfeat+i]*x[row*numfeat+j];
qcount-qcount+l;

/* Test printout module *
/* for(rov-O; rov<(numexvec+numttrec); row++) (

for(col-O; col~numquad; col++)(
printf("For row-%d col-%d quadin-%f\n",row,col,
quadin(rov*numquad+col]);
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1* Begin VERTICAL NORMALIZATION of x, quadin arrays *

/* Vertically normalize x~numexvec+numttvecj[numfeat] *
for-,col-O; col~nunifeat; col++)(
sum=O.O;
for(row-O; row~numexvec; row++)(
sum-sum+xl~row*numfeat+col];

mean-sum/(float) (nunlexvec);

sumsqdif-O.0;
for(row-O; rov~nurnexvec; row++)(
sumsqdif-sumsqdif+(x[row*numfeat+col]-mean)*(x[row*nuinfeat+col] -mean);

s-s(float)(sqrt(sumsqdif/(float)(numexvec)));
for(:-ow-O; row<(numexvec+numttvec); row+.+) (
x[row*numfeat+col]-(x~rov*numfeat+col] -mean)/s;

)/* End column incrementing loop *
/* Test printout loop */
1* for(row-0=; row<(numex7- c+numttvec); row++)(

for(col-O; col~numfeat; col++)(
printf ("For row-%d col-%d nornixvalue-%f\n",row,col.,
x~row*numfeat+col]);

/* Vertically normalize quadin[numexvec+numttvez][riuzquad] *
for(col-O; col<numquad,- col++)(
sum-O 0;

for(row-O; row<numexvec; row+-+)(
sum-sum+quadin [row*nuniquadi+.col 1;

mean-sum/(float) (numnexvec);

sumsqdif-0.0;
for(row-O; rowcnumexvec; row++)(
sumsqd if-sumsqe if+
(quadin~row*numquadi-col] -mean)*(quadin[row*inumquad+col] -mean);

s-(float)(sqrt(sumsqdif/(float)(numexvec)));
for(rov-O; row<(numervec+numttvec); row++) (
quadinlrov*numquad+co3 J-(quadin(row*numquad+col] -mean)/s;

)/* End column incrementing loop *
/* Test printout loop */
1* for(rov-0; rov<(numexvec+nunittvec); row++)(

for(col-O; col'numquad; col+4-)(
printf("For rov-%d col-%d normquadvalue-%f\n" ,row~col.
quadin[row*numquad+coll);

/* End of vertical normalization *



for(avgrun-0; avgrtxn<10; avgrun++)( /* 10 runs thru. program for avg *
srandom((unsigned)ti~me(VULL)); /* Init random() seed off clock *

1* Loop to initialize theta array (one for each neuron) with random
floating point value between -0.5 and 0.5 *

for(i-0; Fcnumneur; i++)(
theta[i]-(float)(random() % 101)/100.00 - 0.5;
/* printf("For i-d theta-%f\n",i,thetari]); *

/* Loop to initialize linear input weights array vlin~numneur][numfeat]
with random floating point values between -0.5 and 0.5 *

for(n-0; n~numneur; n++)(
/* printf("For neuron 0 %d\n",n); w'/

wlin[n*numfeat+i]-(float)(random() % 101)/100.00 - 0.5;
1* printf("For i=%d wlin-%f\n",i~wlinfn*numfeat+i]); *

A / end of nested loop *

fanin - numfeat + nuinquad;
/* fanin - 1; */
neweta - (float) eta / (float) fanin;
/* printf("neweta- %f\n",neweta); */

/* Loop to initialize quadratic input weights array
wquad~numneur][numquad] with random floating point values between
-0.5 and 0.5 */

wquad - (float *) malloc(n~irnneur*rxumquad*sizeof(float));
for(n-0; n~numneur; n++)(
/* printf("For neuron 0 %d\n",n); *

for(i-0; iWnumquad; i+4-)(
wquad~n*numquad+iJ=(float)(random() % 101)/100.00 - 05
1* printf("For i-%d quadweight-%f\n",i,wquadfn*numquad+i]); *

A / end of nested loop *

/* End of initialization; Begin loops for training and testing *
for(bigloop-l; bigloop<-numruns; bigloop.+)(

/* Begin training loop */
for(trnloop-0; trnloop~cnumtrn; trriloop++)(

/* Randomly select an exemplar vector row (flag )*
randnum-(random() % numervec);
/* printf("Randomly selected vector flag number is %d\n",randnuin); *

for(n-0; n~numneur; n++)( 1* Loop to update weights for each neuron k

linsum-O.0;

linsum-linsum+vlin[n*nuznteat+i]*x[randnum*numfeat+i];
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qutadsum-0 .0;

quadsum-quadsum+wquad [n*numquad~i]*quadin jrandnum*ntumquad+i I;

sum-i insvm+quad:ýux;
if ((stzm+thetajnj)<-2O.0) (y-0.0;)
else if ((sumi-theta[n])>20.0) (y-1.0;)

/* Criteria for training each class to fire a specific neuron *
if (class[randnum]-(float)(n)) (d-l.0;)
else (d-0.0;)

error-,y*(l.O-y)*(d-y);
/* printf("lerror-%f\n" ,error); *

wlin~n*numfeat+i]-wlin~n*numfea-t+i]+neveta*errorAxtrandnurn*numfeat+i 1;
/* printf("'For i-%d wlin-%f\n".i,wlin[n*numfeat+ij); *

for(i=0; i<numquad; i+-#.)(
vquad[n*nuinquad+i]-wquad'n*numquad+i] +
newet~a*error*quadin [randnum*numquad+i];
/* printf("For i-%d quadweight-%f\n" ,i~wquad[n*numquad+i]);

theta [n]=theta [n]+neveta*error;
/* printf("For neuron 0 %d theta+*%f\n",n,theta[n]); *
) 1* end of weight training loop for each neuron's weights *

) /* end of complete training loop */

/* Begin test loop to run thru each test vector *
nuinright-0;
for~testvec-numexvec; testvec<(numexvec+numttvec); testvec++)(
/* printf("ctestvec-%d\n" ,testvec); *

neurtcnt-0;
for(n-0; n~numneur; n++)(
linsum-0.0;
for(i-0; icxiumfeat; i++)(
linsum-linsum+wlin~n*numfeat+i]*x[testvec*numfeat+i);

qua dsum-0 .0;
for(i-0; i~numquad; i++)(
quadsummquladsum+wquad~n*n.umquad+i]*quadin[testvec*numquad+i];

sum-i insum+quadsum;

if ((sum+theta[n])<-20.0) fy-0.0;)
else if ((sum+theta[nD)>2O.0) (y-1.0;)

else (y-Cfloat)(l.0/(l O+exp(-(suzn+theta[n]))));)
/* pzI~ntf("y-%f classftesi:vec]-%f\n",y,class[testvec]); *
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/* Test decision criteria for identifying classes *
if ((y>0.8) && (class[testvecJ-(float)(n))) (neurtcnt-neurtcnt*1.)

if ((y<0.2) && (clasx~testvecj?-(f~oat)(n))) (neurtcnt-neurtcnt*I..

) /* end of neurons (n) correct test loop A

if (neurtcnt-nuu'neur) (nuaright-nuarighti1;)
) /* end of testing loop running thru each test vector (testvec) *

itnum-bigloop*n~uutrn;
accuracy-(float)numright/(float)numttvec;
/*printf("Training iteration o: %d Accuracy-%f~i" .icnum~accuracy).*/I

avrunlavgrun] [bigloop-l J-accuracy;

/* end of bigloop, */
)/* end of 10-run loop for averaging *

/* Final averaging routine */
for(col-0; col~numruns; col++)(
addup-0.0;

for~rov'-O; rov<lO; rov++)(
addup'-addup+avrun(rowl [col];
) /* end row ridd up loop *

finalavg[col]-addup/-*0 .0,
printf("Training Epoch 0: %d Average Accuracy-%f\n".
(col+l)*numtrn.finalavg[col]),;
) * end of column loop *

/ * end of main *
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/* Single-layer, third-order neural network algorithm with
automatic vertical normalization of all input combos.
Resiults averaged over 10 runs. */

/* Name: NORMNET3.C */

#include <stdio.h>
Ainclude <'math.h>

*define numneur 2 /* Specify total number of neurons across slab */
/* Number of neurons - number of classes */

*define numexvec 4 /* Specify number of exemplar vectors */
#define numttvec 4 /* Specify number of test vectors */
*define numfeat 2 /* Specify number of features per vector */

/* numfeat also represents # FEATURE COLUMNS */
#define numruns 300 /* Specify number of result plot points */
#define numtrn 10 /* Specify # training iters between test/plot */

*define eta 0.35 /* Specify training factor */

char *malloco; /* Must de1Lne for use of malloc thru program */
/*Necd ror this statement is compiler-dependenc*/

maino()

.'• flag[] holdr ID number of each data vector, class[] holds training
class a&z-,cated with each data vector, x[][] holds feature
components of data vectors, quadin[][] holds second-oTder multiplied
combos of x values, cubein[][] holds third-order multiplied combos
of x values, vlin[][], wquad[][], and wcube[][] hold weights for all
inputs (!nn, -Iing higher order combos), theta[] holds threshold
values %or each neuron */

int *flag;
int i, J, n, randnum, numquad, numcube, qcount, cubcount, fanin;
int startcnt, upcount, row, col, avgrun;
int neurtcnt, numright, bigloop, trnloop, testvec, itnum;
float d, y, error, neweta, accuracy, addup;
float *x, *class, *wquad, *wcube, *quadin, *cubein;
float theta[numneur], wlin[numneur*numfeat], avrun[10][numruns];
float finalavg[numruns];
float sum, linsum, quadsum, cubesum, mean, s, sumsqdif;

/* This module opens an input file and reads data into the
arrays flag[], class[], and x[][] */

FILE *fp;
fp-fopen("xordata","r"); /* Insert correct data file name here */
if(fp--NULL) exit(0);

/* Dynamic alloc of arrays prior to loading in data file values */

flag - (int *) malloc((numexvec+numttvec) * sizeof(int));
class - (float *) malloc((numexvec+numttvec) * sizeof(float));
x - (float *) malloc((uumexvec+numttvec)*numfeat * sizeof(float));
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for(i-O; i<(numexvec+numttvec); ++i) (
fscanf(fp. "%d" ,&flafi[i]);

for(J-O; J~numfeat; ++J)(
fscanf(fp, "%f" ,&x[ i*numfeat+j]);

) ~/* end inner loop *

fscanf(fp, "%f",&class[i]);
) ~/* end outer loop *

fclose(fp);

/* This test module prints out input data containing first two and
final feature components of each vector; checks the above file
opening module (comment out for final program) *

/* for(i-0; i<(numexvec+numttvec); ++i)(
printf("For flag-%d, class=%f, check features are %f %f %f\n",
flag[!.j, class[i], x[i*numfeat+O], xI~i*numfeat+l],
x[i*numfeat+(numfeat-l)]);

/* This module establishes numbers of second-order and third-order
combos of feature inputs FOR EACH VECTOR (without commutative
redundancy). Will be used for array allocation. *

nuinquad-O;
numcube-O;
for(i-1; i<-numfeat; i++)(
numquad-numquad+i;
numcube-numcube+numquad;

/* Fill 2-D arrays for second and third order input combos:
quadintnumexvec+numttvecl [numquad] and
cubein[numexvec+numttvec] (numcube] */

quadin-(float *) mallocC(numexvec+numttvec)*nuinquad*sizeof(float));
for(row-O; rov<(numexvec+numttvec); row++) (
qcount-O;

for(i-O; Fe~numfeat; i++)(
for(j-i; J'anumfeat; J++)(
quadin[row*numquad+qcountJ..x[row*numfeat+i]*x[row'~numfeat+i];
qcount-qcount+l;

/* Test printout module *
/* for(row-O; row'z(numexvec+numttvec); row++) (

for(col-O; col~numquad; col++)(
printf("For row-%d col-%d quadin-%f\n",row,col,
quadin[rov*,numquad+col]);



cubein-(float *) mal1.oc((numexvez+numttvec)*numcube*sizeot'(float));
Zcr(row-O; rov<(umexvec-ýnumttvec); o+'
cubcont-4);
startcnt-O;
upcount-numfeat;

for(i-O; iaiiimfeat; i++)(
for(jm-startcnt; J~cnuznuad; J++)(
caibe~in[rov~numctibejcubcctunt)-x[rct*numfeat+iJ *quadin [row*numquad+j];
cubcount-cubcwount+l;

startcn~t-startcnt+upcount;
upeount-upcount -1:

/* Test printout loop *
/* for(row-C; row<(numexvec+ntumttvec); row++)(

for'col-O; col~numcube; col++)(
printf("For row-%d col-%d cubei'.i-%f\n",row,col,
cubein[row*riumcuba+col]);

/* Begin VERTICAL NORliALIZATION of x, quad'.n, cubein arrays *

1* Vertically normalize x[numexvec+numttvec][nwnfeat] *
for(col-O; col--aumfeat; col++)(
stiM-O.O;

for(row'-O; row'~nuniexvec; row++)(
sum-sunm-,x row*numfeat+col];

mean-sum/(f loat) (numexvec);

sumsqdif-O.O;
for(rov-O; row~numexvec; row++)(
sumsqdif-surnsqdif+(x[row*numfeat+col] -mean)*(x[row*numfeat+col] -mean);

s-(float)(sqrt(sumsqdif/(float)(numexvec)));
for(row-O; rov<(nurnexvec+numttvec); row++) (
x[row*numfeat+col]-(xtrow*numfeat+col] -mean)/s;

)/* End column incrementing loop *
/* Test printout loop */
/* for(row-O; rov<(numexvec+nunttvec); row++.,) (

for(col-O; col'~numfeat; col-i+)(
printf("For rov-%d col-%d normxva~lue-%f\n" ,rov, col,
x[row*numfeat+col]);



/* Vertically noimalize qua~in[nuimoxvec+numttvec][numquad] *

for(col-O; colcnumquad; colii-)(
sum0..O.;
for(row-O; rov~numexvec; rev++)(
sum-sum+quadin [row*numquad+col];

mean-sum/ (float) (numexvec);

sumsqdif-O.O;
for(rov-O; ýcow~numexvec; row++)(
sumsqdif-sumsqdif+
(quadin[rov*numquad+col] -mean)*(quadin[row*nunquad+col] -mean);

s-(float) (sqrt(sumsqdif/(float) (numexvec)));
for(row-O; row<(nulnexvec+nunittvec); row++-i)(
quadin(rowfnumquad+col]-(qtLadin[row*numquad+coJ ] -mean)/s;

)/* End column incrementing loop *
/* Test printout loop */
1* for(row-O; row<(numex-vec+numttvec); row++)(

for(col-O; col~Znumquad; col++)(
printf("For row-%d colm'%d normquadvalue-%f\n" ,row,ccol,
quadin[row*numquad+col]);

/* Vertically normalize cubein[numexvcc+nuinttveu;]fnumcube] *

for(col-O: col~numcube; col4-+){
sumu'O 0;

for(row-0; rovcnumexvec; row++)(
sum-sum+cube in Irow*nuincube+col];

mean-sum/(float) (numexvec):

sumsqdif-O. 0;
for(row-0; rov~numexvec; row++)(
sumsqdif-sumsqdif+
(cubein[row*numcube+col] -meaui)*(cubein[rov*numcube+col] -mean):

s-(float)(sqrt(sumsqdif/(float)(numexvec)));
for(row-0; rov<(nuinexvec+numttvec); row++) (
cubein(row*numcube+col]-(,.ubein[row*numcube+col] -mean)/s;

)/* End column incrementing loop *
/* Test printout loop */
/* fort'rov-O; rov<(numexvec+numttvec); row++)(

for(col-O; e-o].<numcube; col4*)(
printf("For rovs-%d col-%d normcubevalue-gf\n" ,row,col,
cube in Irow*numcube+col] )

/* !Mnd of vertical normalization *
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for(avgrun-O; avgrun<10; avgrun++)( /* 10 runs thru program for avg *
srandom((unsigned)time(NULL)); /* Init random() seed of f clock */

/* Loop to initialize theta array (one for each neuron) with random
flo~ating point values between -0.5 and 0.5 A/

for(i-0; i~numneur; i++)(
theta[i]-(float)(random() % 101)/100.00 - 0.5;
/* printf("For i-%d theta-%f\n~' ,,theta[i]); *

/* Loop to initialize linear input weights array wlinlnumneur]Inumfeat)
with random floating point values between -0.5 and 0.5 *

for(n-0; n-cumneu--; n++)(
/* printf("For neuron # %d\n"',n); *

for(i-O; i~numfeat; i++)(
vlin~n*numfeat4-i]-(float)(random() % 101)/100.00 - 0.5;
/* printf("For i.-%d wlin-%f\n",i.wlinjn*numfeat+i]); *

)/* end of nested loop -

/* fan in - rumfeat + numquad + nulncu'.e; *
fanin -1;

neweta =(float) eta / (float) fanin;
/* priptf("neveta- %f\n"',neweta); */

/* Loop to initialize quadratic input weights erray
wquad[numneur][numquad] with random floating point values between
-0.5 and 0.5 */

wquad - (float *) nialloc(numtneur*numquad*si~eof(floaz));
for(n-0; n~numneur; n++)(
/* printf("For neuron # %d\n",n); *
for(i-0; i~numquad; i.H-)(
wquad[n*numquad+i]-(float)(random() % 101)/100.00 - 0.5;
/* printf("For i-%d qu~idweight..%f\ni" i,wquad[n*numquad+i,]); *

S/* end of nested loop *

/* Loop to initialize cubic input weights array wcube~nuinneur][numcube]
with random floating point values between -0.5 and 0.5 *

vzube - tkfloat *) malloc(niumneur-*numcube*sizeof(float));
for(n-0; n~numneur; n++)(
/* -printf("For neuron # %d\nbt.n); *

for(i-0; i.~numcube, i++)(
wcube[n*numcube..i]-(float)(random() % 101.)/100.00 - 0.5;
/* printf("For i-%d cubeveight-%f\n", i,vcubejn*rumcub..+iJ); *

) * end of nested loop *

5



/* End of ini.tialization; Begin loops for training and testing *
for(bi-loop-l; bigloop<-numruns; bigloop+t)(

/* Begin training loop *
fc'r(trnloop-0; trnloop~numtrn; trnloop++) (

1* Randomly select an exemplar vector row (flag )*
randn~um-(random() % numexvec);
1* printf("Randomly selected -rector flag number is %d\n",randnium); *

for(n-0; n~numneur; n++)( 1* Loop to update weights for each neuron ~
linsum-O.0;

for(i-O; i~numfeat; i++)(
linsummlinsuzn+wli~n[n*numfeat+i]*x[randnurn*numfeat+iJ:

quadsum-O.0;
for(i-0; icnumquad; i++)(
quadsum-quadsum+wquad [n*riumquad+i ]*quadin [randnum*numquad+i];

cubesum-0 .0;
for(i-0; i~numcube; i++)(
cubesum-cubesum~wcube [n*numcube+i]*cubein[randnum*numcube+i];

sum-I insum+quadsum+cube sum;
if ((sum+theta[n])<-20.0) (y-0.0;)
else if ((suin-itheta[n)D>20.0) (y-1.0;)

else (y'-(float)(l.O/(1.0+exp(-(sum+theta[n]))));)

/* Criteria for training each class to fire a specific neuron *
if (class~randnum]-(float)(n)) (d-1.0;)
else (d-0.0;)

error-y*(1.O-y)*(d-y);
1* printf("error-%f\n" ,arror); *

for(i--0; Fa~iumfeat; i++)(
wlin~n*numfeat+ilmvlin[n*riuifeat+i]+nevete*error*x[randnum*numfeat+i];
/* printf("For i-%d wlin-%f\n",i,wlin[n*numfeat+i]); *

for(i-0; i~numquad; i++)(
wquad fn*riumquad+i]J-wquad [n*numquad+i] +
neveta*error*quadin [randnum*numquad+i];
/* printf("For i-%d quadveight-%f\n",.i.wquad[n*numquad+i.]): *

for(i-0; i~numcube; i++)(
wcube [n*numcube+iJ-wcube [n*numcube+i]I+
neveta*error*cubein[randnum*numcube+i];
/* printf("For i-%d cubeweight-%f\n" ,i,vcube[n*numcube+i]); *

theta[n]mtheta[n]+neveta*error;
/* printf("For neuron 0 %d theta-%f\n",n,theta[n]); *
) /* end of weight training loop for each neuron's weights *
) * end of complete training loop *
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/* Begin test loop to run thru. each test vector *
numright-0;
for(testvecmnumexvec; testvec<(numexvec-4numttvec); testvec++)(
1* printf("testvec-%d\n" ,testvec); *
neurtcnt-0;

for(n-O; n~nuznneur; n++)(
linsum-0.O;

linsum-linsum+vlin~n*numfeat+i]*x~testvec*numfeat+i];

quadsum-0.0;
for(i-0; iaiumquad; i++)(
quadsum-quadsuzn+vquadln*riumquad+i]*quadin~testvec*numquad+i];

cube sum-0 .0;
for(i-0; iaiumcube; i++)(
cubesum-cubesum..vcube [n*numcube+i]*cubein[ testvec*nunicube+i];

sum-i insum+quadsumi-cube sum;

if ((sum+theta~n])<-20.O) (y-0.0;)
else if ((sum+theta[n])>20.O) (y-1.0;)
else (y-(float)(l.O/(l.O+exp(-(sum+theta[n]))));)

1* printf("ly-%f class[testvec]-%f\n",y,classttestvec]); *

/* Test decision criteria for identifying classes */
if ((y>0.8) && (class[testvec]-(float)(n))) (neurtcnt-neurtcnt+l;)
if ((y<0.2) && (class~testvec] !-(float)(n))) (neurtcnt-neurtcnt+l;)

) /* end of neurons (n) correct test loop *

if (neurtcnt-numneur) (numright-numright+I;)

) /* end of testing loop running thru, each test vector (testvec) *

itnum-bigloop*numtrn;
accuracy-(float)nuxnright/(float)numttvec;
/*printf("Training iteration 0: %d Accuracy-%f\n".itnumt,accu-.acy) ;*/
avrun[avgrun] [bigloop-Il-accuracy;

/* end of bigloop */
)/* end of 10-run loop for averaging *

/* Final averaging routine */
for(col-0; col~numruns; col++)(
addup-0.0;

for(rov-0; rov<10; row++)(
addup-addup+avrun[rovw (colJ;
) /* end row add up ioop *

finalavg~coll-addup/10 .0;
printf("Training Epoch 0: %d Average Accuracy-%f\n",
(eol+l)*numtrn, fina'Lavg [col]);
1/* end of column loop *

) * end of main *

7



Appendix B. Image Classification Network Code

79



/* Image classification network. This algorithm processes input
data sets consisting of at, index number, a class number, and
8064 components per vector (for 63 X 128 image pixel arrays).
Input "receptive field" windows are set at B X 8 pixels. There
are two hidden layers feeding four output nodes representing
tanks, trucks, target boards, and clutter. Name: IMAGENET.C */

#include <stdio.bh>
#include <math.h>
#include <strttct.h>

#define numeizvec 44 /* Specify number of exemplar vectors */
#define numttvec 44 /* Specify number of test vectors */
#define numfeat 8064 /* Specify number of features per vector */

#define numruns 60 /* Specify number of result plot points */
#define numtni 1')00 /* Specify # training epochs between test/plot */

#define eta 0.35 /* Specify learning-rate */
#define pi 3.14159265358979

/* Structure creating 4-D weight array feeding output neurons:
outnode[i].block2[j].layotwgt[k] */

struct tagl (
double layotwgt[270];

struct (
struct tagl block2[4];

) outnode[4];

char *malloco;

main()(

int *flag, *x, *class, ne'lrtcnt, itnum, gabcount;
int i, J, k, n, bigloop, trnloop, testvec, numright, randnum, bshift;
int rowstpix, colstpix, rowsthl, colsthl, index, laylposn, iay2posn;
double rfarray[64], absum, avbright, esum, energy, lay2wgt;
double outtheta[4], sum, fx, fy, a, b;
double laylout[4]['34], lay2out[4][270], pharray[25], y[4];
double gabor[4][64];
double d[4], errorout[4]"
float accuracy;
/* Open and read in data file to arrays flag[], class[), x[]] [ /

FILE *fp;
fp-fopen('bigimage","rr");
if(fp-NULL) exit(0);

flag - (int *) malloc((numexvec+numttvec) * sizeof(int));
class - (int *) malloc((numexvec+numttvec) * sizeof(int));
x - (int *) malloc((numexvec+numttvec)*numfeat * sizeof(int));
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for(i-0; i<(riumexvec+ntzmttvec); i++)(
fscanf(fp,"%d",&flag~i]);

for(J-0; J~numfeat; J++)(
fscanf(fp, 'td" ,&x[i*numfeat-.j]);

fscanf(fp, "%A" b&class[i]);

felose(fp);

/* Test printout module: *
1* for(i-0; i<(numexvec+numttvec); i++)(
printf('F1.ag=%d\n" ,flagti]);

srandom((unsigned)time(NULL)); /* Init random() seed off clock *

/* Initialize output theta and weight arrays *

for(i=0; i<4; i++)(
outtheta[i]-(double)(random() % 101)11100.00 - 0.5;

for(i-0; i<4; i++)ý /* Normalize- initial values by fan in *
outtheta i]-outtheta fi]/lO80 .00;

)o~-;i4 +)

for(J=0; J<4; J++)(
for(k-0; k<270; k++)(

outnodel.] )lcKc2[j] .layotwgt[k]-
(double)(randorn() % 101)/100.00& 05

for(i-O; i<4: i+i-)( /*Normalize initial values by fan in *
for(J-0; J<4, J++)(

for(k-0:, k<270; k++)(
outnode[i] .block2[j]. layotvgt[k]-

(outnode[i].block2[j].layotwgt[k])/i.080.00;

lay2wgt-l.0/25.O; /* Constant weight for all 2nd hidden layer nodes *

1* Initialize four Gabor function weight arrays for first layer
(maximum value of each function is 0.5 to aid sigmold computation) *

fx-0.0;
fy-.l.0;
gabcoun~-0-;
for(i-0; i<-7; i++)(

for(J-0; J<-7; J++)(
a- 0.2*(float)i - 0.7;
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b- 0.2*(float)j - 0.7;
gabor[OJ [gabcournt]-

0.5*exp(-pi.*(a*e,/3.0+b*b/3.0))*cosC2,0*pi*(fx*a+fy*b));
gabco~antm'gabcount~-1;

fx-1 .0;
fy-O.O;
gabcount-0;
for(i-O; i<-7; i++)(

for(J-0; J<.=7; J++)(
a- 0.2*(float)i - 0.7;
b- O.2*(float)j - 0'.7;
gabor[11 (gabcount]-

0.5*exp(-pi*(a*a/3.0+b*b/3.0))*cos(2.0*pi*(fx*a+fy*b));
gabcount-gabcount+1;

fx-1 .4142136;
fy-1 .4142136;
gabcount-0;
for(i-O; i<-7; i++)(

for(J-0; J<-7; J+i+)(
a- 0.2*(float)i - 0.7;
b- C.2*(float)j - 0.7;
gaborý2M [gabcountj-

0.5*exp(-pi*ka*a/3.O+b*b/3.O))*cos(2.0*pi*(fx*a+fy*b));
gabcoi.nt-gabcoaint+1;

fx-1 .4142136;
fy-0.O-1.4142136;
gabcount-0;
for(i-O; i<-7; i++)(

for(J-0; J<-7; J++)(
a- 0.2*(float).L - 0.7;
b- 0.2*(float)j - 0.7;
gabor[3] (gabcount]'-

0. 5*exp(-pi*(a*a/3.O+b*b/3.0))*cos(2.0*pi*Cfx*a.tfy*b));
gabcount-gabcount-.-;

1* End of initialization; begin loops for training and testing. *
for (bigloop-1; bigloop<-numi-uns; bigloop++'/(

1* Begin training loop */
for(trnloop-0; t'nloop-'nunitrn; trnloop++) (
randnum-(tandom() % numexvec);

3



1* Begin propagation t~hru network *
/* Begin receptive field window shifting loop /
laylposn-O;
for(rowstpix-O; rowstpix<-66 56; rowstpix.'rowstpix+512) f
for(colstpix-rowsvpix;- colstpix<-rowstpix+12O; colstpix-colstpix+4)f
index-O;

for(i-colstpix; i<-colstpixi-896; 1-1+128) (
for(j-i; J<-(i+7); J++)(
rfarraylindex]-Cdouble)x[(randr.um*8064)..J];
index-index+l;

1* LAMBERTIZATION AND CONTRAST NORMALIZATION MODULE (processes each
receptive field window) *

absum-O.O;
for(i-O; i<64; i++)(
absum-absum+rfarray [i];

aNvbright-'absuin/64 .0;
for(i-0; i<64; i++)(
rfarraylij-rfarray[i) -avbright;

esum-O.O;
for(i-0; i<64; i-;+)(
esum-esum+(rfarray[i]*rfarray[i]);

energy-sqrt(esum);
if (energy 1- 0.0) (/* Do not normalize if ei~ergy-0.0 *

for(i-0; i<64; i++)(
rfarray[ i]-rfarray[ il/energy;

) * end normalizati.on module *

/* Propagate thru, to first hidden layer outputs *

for(i-0; i<4; i++)( 1* Load each 1st layer block fromt single window ~
sum-O.O;

for(J-O; J<64; J++)(
sum - sum + gabor[iJ[jJ*rfarray[j];
) /* Finished calculating one block, one position (first layer) *

if(sum=<-20.O) (laylout[iJ[laylposn]-O.O;)
else if(sum>20.O) (laylout[i][laylposn]-l 0;)
else (laylout[~i[laylposn]-(double)(1.0/(1.0+exp(-sum)));)
) /* Finished calculating four blocks, one position (first lzlyer) *

laylposn-laylposn+l;

)/* end of receptive field window shifting loops (all positions) *
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1* Propagate thru second layer *
for(bshift-O; bsihift<4; bshift++) (
lay2posn-O;
for -owsthl-O; rowsthl<-279; rowsthlwrowsthl+3l)(

fox(colsthi-rowsthl; colsthl<-rowsthl.+26; colsth.+-+)(
index-O;

for(i-colsthl; 1<-co sthl+124; 1-1+31)(
for(j-i; J<-(i+4); J++)(
pharray~index].-1aylout~bshift] [j];
1,idex-index+l;

sum-O.O;
for(i-O: 1.<25; i++)(
suzn-sum+pharray Ii];

lay2out[bshift] [lay2posn] - sum*lay2wgt;

lay2posn - lay2posn + 1;

/.k Propagate thru output layer *

for(i-0; i<4; i++)(
sum-O 0;

for(J-O; J<47 J++)(
for(k-O; k<270; k++)(
sum - sum + outnode[i].block2[j].layotwgt[k]*lay2out[jI[k];

i'f((sum+outtheta~i])<-20.O) (y[i]-O.O;)
else if((suni+outtheta[i])>20.O) (y[i]-l.O;)
else (y[i]-(double)(l.O/(l.O+exp(-(sum+outtheta[i]))));)
) /* End calculation for all FOUR output nodes y[4] *
/* End propagation thru network */

/* Backpropagation to update output weights *

for(n-0; n<4; n++)(
if (classfrandnuzn] - n) (djn]-l.O;)
else (d[n]-O.O;)
)/* Filled desired output values, d[4), based on given class *

for(n-0; n<4; n++)(
errorout[nJ - y[n]*(1.0-y[n])*Cdfn]-y[n]);

for(imO; i<4; i++)(
for(j-O; J<4; J++)(

for(k-O; k<270; k++)(
outnode[i].block2[j].layotvgt[k] -

outnode[i].block2[H].14: otwgt[k] +~
,,Eta/lOPO.O)*errorout[i]*lay2out[j] [k:
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for(n-0; n<4; n++.)(
outtheta[n] - outtheta[n] + (eta/1080.0)*errorout[n];

1* end of backprop *

) /* end of training loop (trnloop) *

/* Begin test loop to run thru each test vector *
numright-0;
for(testvec-numexvec; testvec<(numexvec+numttvec); test-"-ec++)(

/"r Legin propagation thru network */
/* Begin receptive field aindov shifting loop *
lay lposn-O;
for(r.owstpix-O; rowstpix<-6656; rowstpix-rowstpix+512)(

for(colstpix-'-owstpix; co!.stpix<-rowstpix+120; colstpix-colstpix+4)(
index-0;

for(i-coi~stpix; i<=colstpix+896; 1-1+128)(
for(j-i; J<=(L+7); J++)(
rfarray[index]-(doubie)xf(testvec*8064)+J];
index-,indeA+l;

1* LAMBERTIZATION AND CONTRAST NORMALIZATION MODULE (processes each
receptive field window) *

absum-O.0;

absum-absumi-rfarray [i];

avbright-absum/64 .0;
for(i-O, i<64; i++)(
rfarray [i ]-rfarray fi] -avbright;

esun-.0 .0;
for(i-0; i<64; i++)(
esum-esum+(rfarray~il*rfarray~i]);

energy-sqrZ(esum);
if (energy 1- 0.0) (/* Do not normalize if energy=O.O *

for(i-O; i<64; i++)(
rfarray[i]-rfarray[ il/energy;

/* end nonrmalization module *
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/* Propagate thru to first hidden layer outputs *

for(i-O; i<4; i++)( /* Load each 1st layer block from single window *
sum-fl 0;
for(J-0; J<64; J++)(
sum - sum + gabor~i][J]*rfarray[j];
) /* Finished calculating one block, one positio~i (first layer) *

if(sum<-20.0) (laylout[i][laylposn]-0.0;)
else if(sum>20.O) (laylout[i][laylposn]-l.O;)
else (laylout[i][laylposn]-(double)(l.0/(l.0+exp(-sum)));)
) /* Finished calculating four blocks, one position (first layer) ~

laylposn-laylposn+l;

) * end of receptive field window shifting loops (all positions) *

/* Propagate thru. second layer */
for(bshift-0; bshift<4; bshift++) {
lay2posn-0;
for(rowsthl-O; rowsthl<-279; rowsthl-rovsthl+31)(

for(colsthl-rowsthl; colsthl<-rowsthl+26; colsrhl++)(
index-0;
for(i-colsthl: iZ-colsthl+124; 1-1+31) (

for(j-i; J<-(i+4); J++)(
pharrayL index]-laylout [bshift] [j];
index- index-+l;

sum-fl 0;
for(i-0; i<25; i++){
sum-sum+pharray[ i];

lay2out[bshift] [lay2posn] =sum*lay2wgt;

lay2posn - lay2posn + 1;

/* Propagate thru. output layer *
for(i-0; i<4; i++)(
SUM-fl 0;

for(J-0; J<4; J++)(
for(k-0; k<270; k++)(
sum - sum + outnodefi].block2[j].layotvgt[k]*lay2out[j)[k];

if((sum+outtheta[ij)<-20.Ci) (y[i]-0 0;)
else if((sum+outthetafi])>20.0) (y[i]-l.0;)
else (y[i]-(double)(1.0/(1.O+exp(-(sum-4outtheta[i]))));)
) /* End calculation for all FOUR output nodes y~i] *
/* End propagation thru network */
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/* Decision criteria for correct classification *
neurtcnt-O;
for(n-O; n<4; n+.+)(
if((y~n]>O.8) && (classftestvecJ-n)) (neurtcnt-neurtcnt+l;)
if((y[n]<O.2) && (class[teztvec] b-n)) (neurtcnt-neurtcnt+l;)
) /* End loep for checking all four output neurons *
if(neurtcnt-.4) (numright-nuiaright~l;)

) /* end of testing loop (testvec) *

itnum, - bigloop*nuintrn;
accuracy - (float)numright/(float)numttvec;
printf("'Training Epoch #: %d Accuracy-%f\n", itnum, accuracy);

)/* end of bigloop *
)/* end of main *



/* Image clasoifizat'tn network with hi;h-order (second-order)
network as ottput layer. Passes DOUBLE precision values to
NORMALIZING routine for second-order processing. This
tersion exceeded machine memor:, capacity and was scrapped
befort completion. See later program versions.
Name: IHAGNET2.C */

#include <stdio.h>
#include <math.h>
*include <struct.h>

#define numexvec 44
#define numttvec 44
#define numvec 88 /* Specify total number of vectors */
#define numfeat 8064 /* Specify number of features per vector */

#deffne pi 3.14159265358979

struct {
double x2[4][270];
double xquad[4][36585];

) vector[88];

char *malloco;

maino(m

int *flag, *x, *class, gabcount;
Int i, J, n, bigloop, Lshlft, row, qcount, block;
int rowstpix, colstpix, rowsthl, colsthl, index, laylposn, lay2posn;
do'ible rfarray[64]. absum, avbright, esum, energy, lay2wgt;
double sum, fx, fy, a, b, sumsqdif, s, mean;
double laylout[4][434], lay2out[4][270], pharray[25];
double gabor[4][64];

/* Open and read in data file to arrays flag[], class[], x[][] */

FILE *fp;
fp-fopen("bigimage","r");
if(fp-NULL) exit(0);

flag - (int *) malloc(numvec * sizeot(int));
class (int w) malloc(numvec * sizecf(int));
x - (int *) malloc(numvec * numfeat * sizeof(int));

for(i-O; i~iumvec; i++)(

fscanf(fp,"%d",&flag[i]);
for(J-O; J<numfeat; J++)(
fscanf(fp,"%d",&x[l.*numfeat+j]);
}

fscanf(fp,"%d",&class[i]);
)
fclose(fp);



/* Test printout module: *

printf("Flag-%d Classm-%d\n'",flag[iJ,classji]);

1* Establish constant "weight" values for Gabor function orientations
and "phase synchronizing" stunmtion layer */

lay2vgt-l.0/25.0; /* Constant weight for all 2nd hidden layer nodes *

/* Initialize four Gabor function veight arrays for first layer
(maximum value of each function is 0.5 to aid sigmoid computation) *

fx-0.0;
fy-l.O;
gabcount-0;
for(i-0; i<-7; i++)(

for(J-0; J<--7; J++)(
a- 0.2*(float)i - 0.7;
b- 0.2*(float)j -. 0.7;
gabor[O] [gabcountl-

0.5*exp(-pi*(a*a/3.O+b*b/3.O))*cos(2.O*pi*(fx~a+fy*b));
gabcount-gabcount~sl;

fx-i.0-,
fy=0.O;
gabcount-0;
fort'i-O; i<-7; i++)(

for(J-0; J<-7; J++)(
a- 0.2*(float)i - 0.7;
b- 0.2*(float)j - 0.7;
gabor[l] fgabcount]-

0.5*expC-pi*(a*a/3.0+b*b/3.0.s)*cosC2.0*pi*(fx*a4fy*b));
gabcount-gabcount+1;

fx-l 4142136;
fy-l .4142136;
gabcount-0;
for(i-0; i<-'7; i++)(

fer(J-0; J<-7; J++)(
a- C.2*(float)i - 0.7;
b- O.2*Cfloat)j - 0.7;
gabor[21 [gabcountJ-

0.5*exp(-pi*(a*a/3.0.gb*b/.3.0))*cos(2.0*pi*(fx*ai~fy*b));
gabcount-pabcount+l;
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fx-1 .4142136;
fy-O.0-1.4142136;
gabcount-O;
for(i-0; L-<-7; i++O)(

for(J-O; J<-7; J++)(
a- O.2*(Zioat)i - 0.7-
b- O.2*(float)j - 0.7;
gabor[3]TIgabcouxnt]-

0.5*exp(-pi*(a~a/3.O+b*b/3.O))*cos(2.O*pi*(fx*a+fy*b));
gabcourit-gabcount+1;

/* End of module establizhing weights. Begin loop thru all vectors. *

for(bigloop-0; bigloop~numvec; bigloop++) (

/* Begin propagation thru. network */
/* Begin receptive field window shifting loop k1
laylposn-O;
for(rows1:pix-O; rowstpix<-6656; rowstpix-rowstpix+512)(

for(colstpix-rowstpix; colstpix<-rowstpix+120; coistpiur-colstpix+4)(
index-O;

for(imcolstpix; i<-colstpix+896; 1-i+128) (
for(j-i; J<-(i+7); J++)(
rfarrayj indexj-(doubi e)x[ (biLgloop*8064)+j 1;
index-sindex+1;

/* LAMBERTIZATION AND CONTRAST NORMALIZATION MODULE (processes each
receptive field window) *

absuni-O.O;
for(i-O; i<64; i++)(
absum-absum+rfarray Ii];

avbright-absum/64 .0;
for(i-O; i<64; i++)(
rfarray~iI-rfarray[iJ -avbright;

eaum-0.0;
for(i-O; i<64; i++)(
esum-esum+(rfarray[i]*rfarrayfi]);

energy-sqrt(esum);
if (energy 1- 0.0) (/* Do not normalize if energf-O.O *
for(i-O; L<64; i+i-t)(
rfarray [i] -rfarray [il/energy;

)/* end normalization module *
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/* Propagate thr'i to first hidden layer outputs */

for(i-0; i<4; i++)( /* Load each 1st layer block from single window */
sum-O.O;

for(J-0; J<64; J++)(
sum - sum + gabor[i])[]*rfarray[J];
) /* Finished calculating one block, one position (first layer) */

if(sum<-20.O) (laylout[i][laylposn]-O.O;)
else if(sum>20.0) (layloutli][laylposn]-l.0;)
else (laylout[i][laylposn]-(double)(l.O/(l.O+exp(-sum)));)
) /* Finished calculating four blocks, one position (first layer) */

laylposn-laylposn+l;

)
) /* end of receptive field window shifting loops (all positions) */

/* Propagate thru second layer */
for(bshift-0; bshift<4; bshift++)(
lay2posn-0;
for(rowsthl--O; rowsthl<-279; rowsthl-rowsthl+31)(

for(colsthl-rowsthl; colsthl<-rowsthl+26; colsthl++)(
index-0;

for(i-colsthl; i<-colsthl+124; i-i+31)(
for(j-i; J<-(i+4); J++)(
pharray[index]-laylout[bshift][J];
indexa-index+l;
)

I
sum-O.0;
for(i-O; i<25; i++)(
sum-sum+pharray[i];
)

lay2out[bshift][lay2posn] - sum*lay2wgt;

lay2posn - lay2posn + 1;
)

)
)
/* End propagation of one vector thru output of summation layer */

/* For each run thru bigloop (over each new vector), fill structure
array vector[88].x2[4][270] with propagated results from outputs
of summation layer. The filled x2 array will be the input for
the final, high-order layer. */

for(i-O; i<4; i++)(
for(J-O; J<270; J++)(
vector[bigloop].x2[i][j] - lay2out[i][j];

)

/ 1* end of bigloop */
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/* Begin high-order modules *
/* FiLl1 arrays for second-order input combos

vector(88] .xquad(4] [365851 *

for(row-O; rov~numvec; row++)(
for(block-0; block<4; block++)(
qcount-O;

for(i-O; i<270; i++)(
for(j-i; J<270; J++)(
vector[rov] .xquad[block] (qcount]-

vector~row].x2(block][iJ vecter[rowJ.x2[block][j];
qcount-qcount+l;

)/* end of main *
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/* Image classification network with high-order (second-order)
network as output layer. Passes DOUBLE precision values
for second-order proceasing. Second-order combinations
are multiplied among the 270 nodes vithin each of the
four separate orientation groups of the phase
synchronization layer outputs.
Name: IMAGNET3. C */

#include <stdio.h>
#include ,ath.h>
#include <struct.h>

#define numexvec 44
#define numttvec 44
#define numvec 88 /* Specify total number of vectors */
#define numfeat 8064 /* Specify number of features per vector */

#define numruns 60 /* Specify number of result plot points */

#define numtrn 1000 /* Specify # training iters between test/plot */

#define eta 0.35

#define pi 3.14159265358979

struct (
double x2[4][2701;

) vector[88];

struct (
double linwgt[4][270];
double quadwgt[4][36585];

) neuron[4];

char *malloc(;

main()(

int *flag, *x, *class, gabcount, fulloop, trnloop, randnum, neurtcnt;
mut i, J, n, bigloop, bshift, row, qcount, block, testvec, numright;
int rowstpix, colstpix, rowsthl, colsthl, index, laylposn, lay2posn;
int itnum;
double rfarray[64], absum, avbright, esum, energy, lay2wgt;
double sum, fx, fy, a, b, linsum, quadsum, y, d, error;
double laylout[4][434], lay2out[4][270], pharray[25];
double gabor[4][64], theta[4], xquad[4][36585];
float accuracy;

/* Open and read in data file to arrays flag[I, class[], x[][] */

FILE *fp;
fp-fopen("bigimage","r");
if(fp---N&ULL) oxit(O);



flag '- (int *) malloc(numvee * s~izeof(int));
class - (int *) malloc(numvcc * sizeof(irt));
x - (int *) malloc(numvec * numfeat *sizeof(int));

for(i'-0; i~numvec; i-++)(
fscanf(fp,"*d"1,&flag~i]);

for(J-0; J~numfeat; J++,)(
fscanf(fp, "%d" .&xIiifumfeat+j]);

fscanf(fp,"%d".&clsss[i]);

fclose(fp);

/* Test printout module: *
1* for(i-0; i~cnumvec; 1++)(
printf("Flag-%d Class-.%d\n"1,flag[i] ,class[ij);

/* Establish constant "weight" values for Gabor function orientations
and "phase L.ynchronizing" summation layer */

lay2wgt-l.C/25.O; /* Constant: weight for all 2nd hidden layer nodes V

1* Initialize four Gabor flinction !-ieight arrays for first layer
(mAximum. value of each furction is 0.5 to aid sigmoid computation) *

fx-0.0;
FV-l.0;
gabcount-0;
for(im.0; i<-7; i++)(

for(J-0; J<-?; J++)(
a- 0.2*(float)i - 0.7;
b- 0.2*(float)j - 0.7;
gabor[0] [gabcount]-

O.5*exp(-pi*Ca*a/3.Q+b*b/3.0))kcos(2.0*pi*(fx*a+fy*b));
gabcount-gabcount+l;

fx-l.0;
fy-0. 0;
gabcount-0;
for(i-0; i<-7; 1+4,)(

for(J-0; J<-7,, J++)(

a- 0.2*(float)i - 0.7;
b- 0.2*(float)j - 0.7;
gabor Ill(gabcotuitjm

0.5*exp(-pi*(a*a/3.0.b*b/3.0))*cos(2.0*pi*(fx*a+fy*b));
gabcount-gabceDunt+l;
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fx-1. 4142136;
fy-1.4142136;
gabcount-0;

for(i-0; i<-7; i++)(
ao(- 0.2(lot1 J-7 0.7,
ba- 0.2*(float)i - 0.7;

gabor[21 [gabcount]-
0.5*exp(-pi*(.a*a/3.0+b*b/3.0))*cos(2.0*pi*(fx*a+fy*b));

gabcount--ebcount+l;

fx-1. 4142136;
fy-0. 0-1.4142136;
gabcount-O;
for(i-0: i<-7; i++)(

for(J-0; J<-7; J++)(
a- O.2*(float)i - 0.7;
b- 0.2*(float)j - 0.7;
gabor[3] [gabcount]-

0.5*exp(-pi*r(a*a/3.0+b*b/3.0)ý)*cos(2.0*pi*(fx*a+fy*b));
gabcount-gabnotint+1;

/* End of module establishing weights. Begin loop thru all vectors. *

for(bigloop-0; bigioop~numvec; b~gloop++) (

/* begin propagation thru network */
1* Begin receptive field window shifting loop *
laylposn-0;
for(rovstpix-0; rowstpix<-6 656; rowstpix-rowstpix+512)(

for(colstpix-rovstpiix; colstpix<-rowstpix+120; colstpix-colstpix+4)(
index-0;
for(i-colstpix; i<-colstpix+896; 1-1+128) (

rfarray[indexj-(double)x[ (big:Loop*8064)+J];
index-index+l;

/* LAMBERTIZATION AND CONTRAST NORM~ALIZATION 140DULE (processes each
receptive field window) *

absum-O.0;
for(i-0; 1<64; L4-+)(
absum-obsum4.rfarray [i],

avbright-absum/64 .0;
for(i-0; i<64; i++)(
rfarray [tI]-rfarray [i - avbr ight;
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esuin.O .0;
for(i-0; J.<64; i++)(
esum-esumi.(rfarrayfi]*rfarrayli]);

enrergyu-aqrt(eaum);
if (energy 1- 0.0) ( *Do rnot aormalize if energy-0.0 *

rfarray 1.1-rfarray [ i]/ene rgy;

/ * ezid normalization module *

/* Propagate thru to first hidden layer outputs *

fcor(i-0; 1<4; i++e)( /* Loiad e..ich 1st .iayer block from single wIndow *
smk 0;

for(J-0; j< 6 4 ; J++)(
sum -sum +t %borfi][J]*rfarray[j];
) /* Finished calculating ore block, one j:,,sition (first layer) *

if(sum<-.20.O) (layloucji] [layIlposnuv.0.O;)
else if(sum>10.0) (laylout[i][laylposn]-1.O;)

) /* Finished calculating four blocks, one position (first layer) '

laylposn.-laylposn+l;

)/* end of receptive field window shifting loops (all positions) *

/* Propagate thru second layfr *1
for(bshift-0; bshift<4; bshii .++) (
lay2posn-0;
for(rovsthl-0; rowsthl<m279; rovsthl-rowsthl+431) (

for(colsthl-rowsthl; colsthl<=rowsthl+26; colsthl++) {
index-0;

for(j-i; J<-(i+4); J++)(
pharrayfindex]-laylout[bshiftJ [j];
index-index+l;

aIUx-0.0;
for(i-0; i<25; i++)(

s6um-sum+pharray[ i];

lay2out[bshiftll[lay2posn] - sun~ilay2vgt;

lay2posn - lay2posn + 1;

/* End propagation of one vector thru. outptlt of summation l~ayer *
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/* For each run thru big1loop (over each new vector), fill structure
array vector[88].x2[4][270] with propagated results from outputs
of summation layer. The filled x2 array will be the input for
the final, high-order layer. *

for(i-0; i<4; i++)(
for(J-0; J<270; J++)(
vector[bigloop].x2[i][j] lay2out[i][j];

)/* end of bigloop *

/* Begin high-order modules *
/* Initialization */
srandom((unsigned)tire(NULL)); /* Init random() seed off clock *

for(n-0; n<4; n++)(
for(block-0; block<4; block++)(

for(J-0; J<270; J++)(
neuron[n].linwgt~block][j] - (double)(random() % 101)/100.00 - 0.5;
neuron[n].linwgtlblock][j] - neuronfn].linwgt~block][()1/47420.OO;

for(n-0; n<4; n++)(
for(block-0; block<4; block++)(

for(J-0; J<36585; J++)(
neuron[n].quadwgt~block][j]-(double)(random() 103.),'100.00 - 0.5;
neuronin] .quadwgt[block][j]-neuronjn] .quadwgt[block][J]/14i7420.00;

for(n-0; n<4; n++)(
thetafn] - (double)(random() % 101)/100.00 - 0.5;
theta[nJ - theta[n]/147420.00;

/*End of initialization; Begin training and testing loops *

for(fulloop-1; fulloop<-numruns; fulloop++)(
for (trnloop-0; trnloop~cnumtrn; trnloop++) (
randnum-(random() % numexvec); /* Select random exemplar vector *

/* Multiply out second-order combinations for present exemplar *
for(block-0; block<4; block++,*(
qcount-0;

for(i-0; i<270; i++)(
f,,r(j-i; J<270; J++)(
xquad[block] [qcountj -

vzbctor[randnum].x2[block][i] vector[randnum) .x2[block[jfjl
qcount-qcount+l;
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for(n-0; n<4; n++)( /* Loop to change neuron *
linsum-O.O;
for(block-O: block<4; block++)(

for(j.-OJ; J<270; j++)(
lins'am - linsum +

neuron[n].linwgt[block][J]*vnctor[randnum].x2[biock][j];

)/* end block *

quadsum-O 0;
for(block-O; block<4; block++)(

for(J-O; J<36585; J++w)(
quadsum - quadsum + neuron~nJ .quadwgt [block][Jj]*xquad[block] [j];

)/* end of block *

sum - linsum + quadsum;

if ((sum+theta~n])<-20.O) (y-0.0;)
else if ((sum+theta[n])>20.0) (y-1.0;)
else (y-(double)(l.O/(l.O+exp(-(su~m+theta[n]))));)

1* Criteria for training each class to fire a specific neuiron *
if (class[randnum]-n) (d-1.0;)
else (d-0.0;)

error-y*(l.O-y)*(d-y);

/* Update weights */
for(block-O; block<4; block++)(

for(J-O; J<270; J+--)(
neuron[n].linwgt[block][J] - neuron~nj.linwgt[blockj~j] +

(eta/147420.OC)*error*vector[randnum] ~x2 [block) fj];

for(block-O; block<4; block++)(
for(J-O; J<36585; J++)(
neuron[n] .quadwgt[block)[j] - neuren[n] .quadwgt[bloek][jI +

Ceta/147420.OU)*error*xquad[blockl Ii];

thetain] - thetain] + (eta/147420.0O)*error;

) /* End of neu~ron (n) changIng loop *
3/* End of trnloop */

/* Begin test. loop to run thr-u each test vector *
mnuright-O;
for(testvec.-numezvec; testve'cxiumvec; testvec++)(
neuartcnt-O;
/* )hultiply out second-order ccmbinati-ns for pres'!Tit test veCtOr /

for(block-O; block'z4, bA.c'ck++)(
qcount-O;

for(i-O; i<270; i++i)(
for(j-i; J<270; J+,+)(
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xquad[block] [qcounit]
vector(testvec].x2(block][i] *v.ector~testvec] .x2[block] [j];

qcount-qcount+l;

for(n-O; n<4; n++)( /* Loop to change neuron *
linsum-O.O;
for(block-O; block<4; block++N)(

for(J-O; J<270; J++)(
linsum - linsum +

neuroninl .linwgt[block] [J]*vector[testvecj .x2[block] [j]:

)/* end block *

quadsum-O.O;
for(block-O; block-<4; block++)(

for(J-O; J<36585; J++)(
quadsum - quadsum + neuron[n] .quadwgt[blockj [J]*xquad[blockj [j],

)/* end of block *

sumf - linsuin + quadsum;

if ((sum+theta[n])<-20.O) (y-0.0;)
else if ((sum+theta[n])>20.O) (y-1.O;)
else (y-(double)(l.O/(l.O+exp(-(suni+tlieta[n]D)));)

/* Test decision criteria for identifying classes *

if ((y>0.8) && (class[testvec]-n)) (neurtcnt-neurtcnt+l;)
if ((y<0.2) && (class(testvec]!-n)) (neurtcnt-neurtcnt+l;)

)/* End of neuron (n) changing loop *
if (neurtcnt-4) (nuxnright-nuinright+l;)
) /* End of test loop running thru each test vector (testvec) *

itnL~n-f ul loop*numtrn;
accuracy-(float)numright/(float)numttvec;
I~rintf("Training Epoch 0: %d Accuracy-%f\n", itnum, accuracy);

)/* End of fulloop *
)/* end of main *
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/* Image classification network with high-order (second-order)
network as output layer. Passes DOUBLE precision values
for second-order processing. Multiplies out second-order
combos among the four orientations for each of the 270
nodes (per orientation) feeding final layer.
Name: IMAGNET4.C */

#include <stdio.h>
#include <math.h>
#include <struct.h>

*define numexvec 44
#define numttvec 44
#define numvec 88 /* Specify total number of vectors */
#define numfeat 8064 /* Specify number of features per vector */

#define numruns 1000 /* Specify number of result plot points */

#define numtrn 1000 /* Specify # training iters between test/plot */

#define eta 1.0

#define pi 3.14159265358979

struct (
double x2[4][270];

) vector[88];

struct (
double linwgt[4][270];
double quadwgt[270][10];

) neuron[4];

char *malloco;

maino(0

int *flag, *x, *class, gabcount, fulloop, rrnloop, randnum, neurtcnt;
int i, J, n, bigloop, bshift, row, qcount, block, testvec, numright;
int rowstpix, colstpix, rowsthl, colsthl, index, laylposn, lay2posn:
int itnum, blocki, blockJ, spot;
double rfarray[64], absum, avbright, esum, energy, lay2wgt;
double sum, fx, fy, a, b, linsum, quadsum, y, d, error;
double laylout[4][434], lay2out[4][270], pharray[25];
double gabor[4][64], theta[4], xquad[270][10];
float accuracy;

/* Open and read in data file to arrays flag[], class[], x[][] */

FILE *fp;
fp-fopen("bigimagr'","r")
if(fp-NULL) exit(0);



flag (tUnt *) malloc(numvec * sizeof(int));
class -(int. *) malloc(numvec * sizeof(int));
x - (int *) malloc(numvec * numfeat * sizeof(int));

for(i-0; i~numvec; i++)(
fscanf(fp,"%d",&flag(i]);

for(J-0; J~snumfeat; J++)(
fscanf(fp, "%d" ,&x[ i*numfeat+j]);

fscanf(fj, "%d" ,&class [i]);

fclose(fp);

/* Test printout module: *
1* for(i-0; i~numvec; i++)(
printf("Flag-%d Class-%d\n"1,flagfi] ,cla~ssi]);

1* Establish constant "weight" values for Gabor function orientations
and "phase synichronizing" summation layer */

lay2wgt-1.0/25.0; /* Constant weight for all 2nd hidden layer nodes *

/* Initialize four Gabor function weight arrays for first layer
(maximum value of each function is 0.5 to aid sigmoid computation) *

fx-O.0;
fy-l.0;
gabcount-O;
for(i-O; i<-7; i++)(
for(J-O; J<-7; J++)(
a- 0.2*(float)i - 07
b- 0.2*(float)j - 0.7;
gabor[O] [gabcount]=

0.5*exp(-pi*(e*a/3.0.ib*b/3.0))*cos(2.O*pi*(fx*a+fy*b));
gabcount-gabcount+l:

fx-l.0;
fy-0. 0;
gabcount-0;
for(i-0; i<-7; i+is)(

for(J-0; J<-7; ,]++)(
a- 0.2%k(float)i - C.7;
b- 0.2*(float)j - 0.7;
gabor[l] [gabcountju.

0.5*e-xp(-pi*Ca*a/3.O+b*b/3.0))#*cos(2.0*pi*(fx*aify*b));
gabcount-gabcount+l;
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f1.4142136;
fyi-i.4142136;
Sabcoiunt-0;
for(i-O; i<-7; i++)(

for(J-O; J<-7; J++)(
a- O.2*(float)i - 0.7;
bi- 0.2*(float)j - 0.7;
gabor[2] [gabcount]u,

0.5*exp(-pi*(a*a/3.O+b*b/ý.0))*cos(2.0*pi*(fx*a+fy*b));
gabcount-gabcount+l;

fx-1 .4142136;
fy- . 0-i. 4142136;
gabcoutw-0;

for(i-0; ij-7; t++)(
ao(- 0.;la~ J-7 0.?;(
a- 0.2*(float)i - 0.7;

gabor[3] [gabcour~tj-
0.5*exp(-pi*(a*a/3.O+b*b/3.O))*cos(2.0*pi*(fx*a+fy*b));

gabcount-gaibcount+l;

/* End of module establi3hing weights. Begin loop thru all vectors. *

for (bigloop-0; bigloop~nurnvec; bigloop++) (

/* Begin propagatio-a thru network */
/* Begin receptive field window shifting loop *
laylposn-0;
for(rowstpix-0; rowstpix<-6656; rowstpix-rowstpir*512) (

for(colstpix-rowstpix; colstpix<-rowstpix+120; colstpix-colstpix+4)(
index-0;

for(i-coiatpix; i<-Colstpix+896; 1-1+128) (

rfarrayfindexl-(double)x[(bigloop-8064)+J];
index-indec+l;

1* LAIIBERTIZATION AND CONTRAST NORMALIZATION MODULE (processes each
receptive field window) *

absum-0.0;

absuni-absum+rfarrayl[ );

avbright-mabsum/64 .C;
for(i-0; i<64; i++)(
rfarra~y(iJ-rfm~rray(i]-avbright;
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esum-O.0;
for(i-O; i<64; i++)(
esum-esum+(rfarray 1] *rfarray (1]);

energy-sqrt(esum);
if (energy 1- 0.0) (/* Do not normalize if energy-0.O *

for(i-0; L<64; i++)(
rfarray [ilJ-rf array (i] /energy;

) * end normalization module *

/* Propagate thru to first hidden layer outputs *

for(i-O; i<4: L++)( /* Load each 1st layer block from single window *
sum-O.0;
for(JmO; J<64; J++)(
sum - sum + gabor[i][J]*rfarraylj];
) /* Finished calculating one blockc, one position (first layer) *

if(surn<-200O) (laylout[i][lay3,posnj-O.O;)
else if(sum>20.O) (laylout~i][laylposn]ml.O;)
else (laylout[ijflaylposn]-(double)(1.O/(1.O+exp(-sum)));)
) /* Finished calculating four blocks, one position (first layer) *

laylposn-laylposn+l;

) * end of receptive field window shifting loops (all positions) *

/* Propagate thru second layer */
for(bshift-O; bshift<4; bshift*+-.)(
lay2posn-O;
for(rovsthl-O; rowsthl<-279; rowsthl-rovsthl+3l)(

for(colsthl-rovsthl; colsthl'z-rovsthl+26; colsthl+-) (
index-O;
for(i-colsthl; i<-col sthl+124; 1-1+31)(f

for(jmi; J<-(i+4); J++)(
pharraylindex]-layloutibshift] [i];
index-index+l;

Sum-0.O;
for(i-O; i<25; i++)(
sum-sum+phar~eay[iJ;

lay2out[bshiftj [lay2posn] - sum*lay2wgt;

lay2poxn - lay2posn + 1;

/* End propagation of one vector thru output of summation layer *
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/* For each run thru bigloop (over each new vector), fill structure
array vector[88] .x2[4] 12701 with propagated results from outputz
of summation layer, The filled x2 array will. be the input for
the final, high-order layer. *

for(i'-0; i<4; L++)(
for(J-0; J-c270; J++)(
vector[bigloop].z2[iJ[j] - lay2out[iJ[jJ;

)/* end of bigloop *

/* Begin high-order moduk.es *
/* Initialization */
srandom((unsigned)time(NULL)); /* Init random() seed off clock *

for(n-0; n<4; n++',(
for(block-0; block<4; bloc-k++)(

for(J-O; J<270; J++)(
neuron[n].linvgt[block)[jJ - (double)(random() % 101)/100.00 - 0.5;
neuron[n].linvgt[block][jJ - neuron[n].linwgt[block][J]/147420.00;

for(n-0; n<4; n++)(
for(spot-ti; spot<270; spot++)(
for(j-0; j<1.0;- J++s)(
neuron~n].quadwgt~spotj[j]-(double)(random() % 101)/100.00 - 0.5;
neuron,[n].quadwgt[spot)[jj-neuron~nJ.quadwgt[spot][J]/147420.O0;

for(n-0; n<4; n++)(
theta[n3 - (double)(random() % 101)/1.00.00 - 0.5;
thetatn] - the~ta[ra]/147420.OO;

/* End of initialization; Begin traininig and testing loops *

foz(fulloop-l; fulloop<-niumruns; ftzlloop++)(
for (trrlcop-0; trnloop<~numtrn; trnioop.+) (
randnum-(random() % nuzgexvec); /* Select random #exemplar vector *

/* Multiply out zecond-order combinations fir- p~esent exirnplar
for(spot-0; upot<270; spot++)(
qcount-0;

for~blocki-0; blocki<c4; blocki++) (
for(bloc~kj-blocki; blockj<4; blockj++)(
xquadfspcet][qcount] -

vector'randnuml .x2[blocki] (spot] * vector[randn,,:m] .x2[blockj] [spot);
qcount-qcount+l;
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for(n-0; n<4; n++)( /* Loop to change neuron *
linsum-0.O;

for(block-0; block<4; block++)(
for(J-O; J<270; J++)(
linsum - linsum, +

neuronini .linvgt[block] [J]*vector~randnum] .x2[block] [j];

)/* end block *

quadsum-0 .0;
for(spot-0; spot<270; spot++)(

for(J-O; J<10; J++)(
quadsum - quadsum + neuron[xh].quadvgt[spot][j]*xquad[spot)(j];

sum -linsum + quadsum;

if ((sum+theta[n])<-20.O) (y-0.0;)
else if ((sun+.theta[n])>20.O) (y-1.0;)
else (y-(double)(1.O/(l.O+exp(-(sum+theta[n]))));)

/* Criteria for training each class to fire a specific neuron *
if (class[randnum]-n) (d=1.0;)
else Wd-0.00

error-y*(l.O-y)*(d-y);

/* Update veights */
for(block-O; block<4; block++)(

for(J-0; J<270; J++)(
neuron[n].linwgt~block][j] - neuronin] .linvgt[block]Ij] +

(eta/l47420.OO)*error*vector[randnum] .x2[block] [JI.

for(spot-O; spot<270; spot++)(
for(J-0; J<10; J++)(
neuron[n] .quadwgt[spot][j] - neuron(nJ .quadwgt[spot][j] +

(eta/147420.OO)*error*xquad[spot] [j];

thetaln] - thetain] + (eta/147420.0O)*error;

) /* End of neuron (n) changing loop *
) /* End of trnloop */

/* Begin test loop to run thru each test vector *
numright-O;
for(testvec-n.lmexvec; testvec~numvec; testvec++)(
neurtcnt-O;
/* Multiply out second-order combinations for present test vector *
for(spot-O; spot<270; spot++)(
qcount-O;

for(blocki-O; blocki<4; blocki++)(
for(blockj-blocki; blockj<4; blockj++)(
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xquad[spot] (qcount] -
vector(testvecJ .x2(blocki] (spot] * vector[testvec] .x2[blockj] [spot];
qcount-qcount+1;

for(n-O; n<4; n++)( /* Loop to change neuron *
linsum-O.O;

for(block-O; block<4; block++)(
for(J-O; J<270; J++)(
linsum - linsum +

neuron~n] .linwgt[block] (j]*vector[testvec] .x2[block] [j];

)/* end block *

quadsum-O 0;
for(spot-0; spot<270; spot++)(

for(J-0; J<10; J++~)(
quadsum - quadsum + neuron[n] .quadwgt[spot] [J]*xquad[spot] [ii;

su linsunm + quadsum;

if ((sum+theta[n])<-20.O) (y-0.0;)
else if ((sum+theta[n])>20.O) (y-1.O;)
else (y-(double)(l.O/(1.0+exp(-(sum+theta[n]))));)

/* Test decision criteria for identifying clesses *
if ((y>0.8) && (class[testvec]- r)) (neurtcnt-mneurtcnt+1;)
if ((y<0.2) && (class[testvec]t-n)) (neurtcnt-neurtcnt+l;)

) /* End of neuron (n) changing loop */
if (neurtcnt-4) (nurnright-numright+l;)
) /* End of test loop running thru each test vector (testvec) *

itnum-ful loop*numtrn;
accuracy-(float)numright/(float)numttvec;
yzintf("Training Epoch #: %d AccuracymIf\n", itnum, accuracy);

)/* End of fulloop *
)/* end of main *
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/* Image classification network using multilayer perceptron for final
output processing; variable number of hidden layer nodes.
Name: IMAGNET5.C *

#include <stdio.h>
okinclude <math.h>

#define numezvec 44 /* Specify number of exemplar vectors *
#def ine numttvec 44 /* Specify number of test vectors */
odefine numfeat 8064 /* Specify number of features per vector *
#def in. midnodes 30 /* Specify number of hidden layer nodes *

#define numruns 50 /* Specify number of result plot points *
#define numtrn 1000 /* Specify 0 training epochs between test/plot *

*def in. eta 1.0 /* Specify learning rate *
*define pi 3.14159265358979

char *malloco;

ma ino()

int *f lag, *x, *class, neurtcnt, itnum, gabcount, loadcnt;
mnt i, J, k, n, bigloop, trnloop, testvec, numright, randnum, bshift;
mnt rowstpix, colstpix, rowsthl, colsthl, index, laylposn, iay2posn;
double rfarrayf 64], absum, avbright, esum, energy, lay2wgt;
double outtheta[4], midtheta[midnodesJ, sum, fx, fy, a, b, errsum,
double laylout[4J[434], lay2out[4][2701, pharray[25];
double gabor[4] [64], input[lOBO], outwgts[4] [midnodes];
double midwgts[midnodes] [1080];
double d[4], arrorout[4], errormid[midnodes), yout[4], ymid[midnodes];
float accuracy;

/* Open and read in data file to arrays flag[], class[], x[H] ]

FILE *fp;
fpm-fopen("bigimage" ,")
if(fp-NULL) exit(0);

flag -(mnt *)malloc((numexvec+numttvec) * sizeof(int));
class -(mnt *)malloc((numexvec+numttvec) * siieoflint));
x - (mnt *) malloc((numexvec+numttvec)*numfeat *sizeof(int));

for(i-0; i<(numexvec+numttvec); i++)(
fscanf(fp, "%d" ,&flag[ iJ);

for(J-0; J.~numfeat; J+.+)(
fscanf(fp,"%d",&x[i*numfeat+j]);

fscanf(fp, "%d" ,&class [i]);

fclose(fp);
/* Test printout module: *
/* for(i-0; i<(numervec.-numttvec); i4-+)(
printf("Flag-%d\n" ,flag[iJ);
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srandom((un~signed)time(NULL)); /* Init random() seed off clock *

/* Initialize output theta and weight arrays *

for(i-0; i<4; i++)(
outtheta[iJ - (double)(randomrn( 1 101)/100.00 - 0.5;
outtheta[iJ - outthetali]/(double)midncdes;

for(i-0; i~aidnodes; i++)(
nxidtheta~iJ - (double)(random() % 101)/100.00 - 0.5;
midtheta[i] - midtheta~iJ/1080.00;

for(i-0; i<4; i+e+)(
for(J-0; J~midnodes; J++)(
outvgtsji][j] - (double)(random(? % 1.01)/100.00 - 0.5;
outwgts[i1[j] - outwgts[i][J]/(double)midnc'des;

for(i-0; i'~nidnodes; 1.+4)(
for(J-0; J<1080; J++)(
midwgts[i][j] - (double)(randoui() % 101)/100.00 - 0.5;
midvgts[i][j] - midvgts[i][J]/1080.00;

lay2vgt-1.0/25.0; /* Constant weight for all 2nd hidden layer nodes /

/* Initialize four Gabor function weight arrays for fizst layer
(maximum value of each function is 0.5 to aid sigmoid computatior) *

fx-0 .0;
fymi. 0;
gabcovnt-0;
for(I-0; i<-7; i++)(

a- 0.2*(float)i -0.7;

b- C.2Vr(float)j -0.71;

gabor [0][gabcount]-
0.5*exp(-pi*(a*a/3.0+b*b/3.0))*cos(2.O*pi*(ifx*a+fy*b));

gabcount-gabcount+1;

fx-l.0;
fy-0,.0;
gabcount-0;
for(i-0; L<-7; i++)(

for(J-0; J<-7; J++)(
a- 0.2*(float)i - 0.7;
b- 0.2*(fl~oat)j - 0.7;
gabor[lJ [gabcountl-
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0.5*ezp(-pi*(a*a/3.0+b*b/3.0))*cý)s(2.0*pi*(fx*a+fy*b));
gabcount-gabcoumt+1;

fx-1 .4142136;
fy-1 .4142136;
gabcoiint-.0;
for(i-0; i<-7; L++)(

for(J-0; *<-7; J4+)(
a- O.2*(float)i - 0.7;
b- 0.2*(float)j - 0.7;
gabor[21 [gabcount]-

0.5*exp(-pi*(a*a/3.0+b*b/3.0))*cos(2.0*pi*Cfx*a+fy*b));
gabcoint-gabcount+l;

ft.=3.4142136;
fy-.0.0-1 .4142136;
gabcount-0;

for(J-0; J<-7; J++)(
a- 0.2*(float)i - 0.7;
b- C.2*(float)j - 0.7;
gaborf 3] [gabcountle.

O.5*exp(-pi*(a*a/3.O+b*b/3.O))*cos(2.O*pi*(fx*a+fy*b));
gabcoxnt-gabcouxit+l;

/* End of initialization; begin l.oops for training and testing. *
for(bigloop-l; big~oop<'.r-uinrur.s; biglc.op++) (

/* Begin training loop */
for(trnloop-O; trnloop~nuxutrn; trn~.ocp++)(
randnumn-(rar~niu( % numexvec);

/* Begin propagation thru net-.ork~*
/* Begin receptive field window shifting loop *
layiposn-0;
for(rowstpix-0; rowstpi-6 <-,656; rows to ix-rciws tp iX 4Al2)(

for(colstpiz-rovst'pix; culstpix<.'ruwstpIiL+120; colstpl::-culstpix:+4)(
index-0;

for(jr'i; J<-(1+7); J+v+)(
rfarray[index]w(dou.ble)x( (randnium*B064)+-J];
index-index+l;
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/* LAMBERTIZATION AND CONTRAST NORMALIZATION MODULE (processes each
receptive field window) *

absuna-O.0;
for(i-0; i<64; L++)(
abs'im-absum+rfarray [ ];

avbrightm-absum/64 .0;
for(i-0; i<64; i++)(
rfarrayfijmwrfarrayii] -avbright;

e'sum-0.0;
for(i-0; i<64; i++)(
esum-esum+(rfarray[iJ*rfarrayfi]);

energy-sqrt(asum);
if (energy 1- 0.0) (/* Do not normalize if energy-O.O *
for(i-O; i<64; i++)(
rfarray [5]-rfarray i] /energy;

) * end normalization module ~

1* Propagate thru. to first hidden layer outputs *

for(i-0; i<4; i++)( 1* Load each 1st layer block from sinigle window *
sum-0.0;

for(J-O; J<64; J++)(
sum - sum + gabor~i]J~j*rfarray[jJ;
) 1* Finished calculating one block, one position (first layer) *

if(sum<-20.0) (laylout[i]fiaylposnJ-0.0;)
else if(susn>20.0) (layloutiji[la-jlposn]-l.O;)
else (layloutli][laylposn]-(double)(1.0/(l.O+exp(-sum)));)
) /* Finished calculating fouxr blocks, one position (first layer) *

laylposn-laylposn+l;

)/* end of receptive field window shifting loops (all positions) *

/* Propagate thru second layer */
fcr(bshift-O, bshift<4; bshlAft++)(

la¶'2posn-0;
for(rowsthl-O; rowsthl<-279; rowsthl-rovsthl+31)(

for(colathl-rowsthl; colsthl<-ro-vsthl+26; colsthl++)(
index-0;
for(i-colsthl; 1<-colsthl.+124; 1-1+31) (

for(j-i; J<-(i+4); J-.-.)(
pharray[ indexi-laylout [bshift I U];
index-index+l;

sum-0. 0;
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for(i-0; i<25; i++)(

sum-sum+pharray( i];I
lay2out[bshift] [lay2posn] - sum*lay2wgt;

lay2posn - lay2posn + 1;

/* Load input array for multilayer perceptron *
loadcnt-0;
for(i-0; i<4; i++)(
for(J-0; J<270; Ji-+)(
input[loadcnt) - lay2out(i][j];
loadcnt-loa lcnt+l;

/* Test printout module for input array *
/*printf("flag..%d\n' ,flag~randnum]);
for(i-0; i<1080; i++)(
printf ( "input-%f\n" ,input [i]);

printf("class-%d\n' ,class [randnun]) ;*/

1* Propagate thru multilayer perceptron *

for(n-O; n~iuidnodes; n++)(
summO. 0;
for(i-O; i<1080; i++)(
sum - sum + midvgts[xi][i]*input[i];

if) s m m~ t e s n )< 2 .) ( m d n - . ;
eleif ((sum+midtheta[n])<>20.0) (ymid[niJ-1.0 ;

else (ymidfn]..(double)(l.O/(l.0+exp(-(sum+midtheta[n]))));)
) /* End (n) loop changing hidden layer nodes *

for(n-0; n<4; n+-*)(
Sum-0.0;

for~imO; i.Onidnodes; ii-+)(
sum - sum + outvgts[n][i]*ymid~l];

if)smotbtl)<2.)(otn-.;
eleif ((xum+outtheta[n])<-20.0) (youttn]-1.0 ;

else (yout~nJ-(double)(i.O/(1.O+exp(-(sum+outtbeta[ni]))))J,
/ * End (n) loop changing output layer nodes *

/*End propagation thtu network */

1* Backpropagation to update perceptron weights *

for(n-0; n<4; ni-+)(
if (classrrandnum] - n) (dfn)-l.O;)
else (dfnj-0.0;)



for(n-O; n<4,- n++4)(
errorout[n) - yout~n]*(1.O-yout~n])*(dln]-yout~n]);

for(n-O; n~onidnodes; n++)(
errsum-Q.O;

errsum - errsum + errorout[i]*outwgts[i][n],

errormid~n] m ymid[n]*(l.O-ymid[n])*errsum;

for(i-O; i<4; i++)(
for(J-O; J~nidnodes; J++)(
outwgtsfi][j] - outvgts[i][j] +

(eta/(double)midnodes)*errorout[i]*ymid[j ];

for(i-O; i<4; i++)(
outtheta[i] - outtheta[i] + (eta/(double)midnodes)*errorout[i.];

for(i-O; i~cmidnodes; i++)(
for(J-O; J<1080; J++)(
midwgts[i][j] - midwgts~i] Ii] + (eta/1080.OO)*errormidlli]*input[j);

for(i-O; i~midnodes; i++)(
midtheta(i] - midtheta[i] + (eta/1080.OO)*errormid[i];

/* end of backprop *

)/* end of training loop (trnloop) *

/* Begin test loop to run thru each test vector *
numright-O;
for(testvec-numeruec; testvec<(numexvec+numttvec); testvec+~+)(

1* Begin propagation thru network */
/* Begin receptive field window shifting loop *
laylposn-O;
for(rowstpix-O; rovstpix<-6656; rowstpix-rovatpix 512)(

for(col~stpix-rowstpix; colstpix<-rowstpix+120; colstpix-colstpix44)(
index-O:
for(i-colstpix; i<-colstpix+896; 1-1+.128) (

for(j-i; J<-(i+7); J++)(
rfarray[index]-(doubie)x( (testvec*8064)+J];
index-index+l,
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1* LAMBERTIZATION AND CONTRAST NORMALIZATION MODULE (processes each
receptive field window) *

absuin-0.O;
for(i-O; i<64; i++)(
absum-absum+rfarray[ i];

avbright-absum/64. 0;
for(i-0; i<64; i++)(
rfarray (1]-rfarray [ ] -avbr ight;

esum-O.O;
for(i-0; i<64; i++)(
esum-esum+(rfarray~i]*rfarray[i]);

energy-.sqrt(esum);
if (energy 1- 0.0) (/* Do not normalize if energy=O.O 0

for(i-0; 1<64; i++)(
rfarray[ i]-rfarray[ i]/energy;

)/* end normalization module *

/* Propagate thru t~o first hidden layer outputs *

for(i-0; 1<4; i+4+)[ /* Load each 1st layer block from single window ~
sum=0.0;

for(J-O; J<64; Ji-F+)(
sum - sum + gabor[i][J]*rfarray[j];
) /* Finished calculating one block, one position (first layer) *

if(sum<-20.0) (laylout~i][laylposn]-O.0;)
else if(sum>20.0) {laylout[i][laylposn]-l.0;)
else (laylout[i][laylposn]-(double)(l.0/(l.O+exp(-sum)));)
) /* Finished calculating four blocks, one position (first layer) *

laylposn-laylposn+l;

)/* end of receptive field window shifting loops (all positions) *

/* Propagate thru second layer */
for(bshift-0; bshift<4; bshift++)(
lay2poin-0;
for(rowsthl-0; rowsthl<-279; rowsthl-rowsthl+31)(

for(colsthl-rowsthl; colsthl<-rowsthl+26; colsthl++)(
index-0;

for(i-colsthl; 4.<-colsthl+124; 1-1+31)(
for(j-i; J<-(i+4); J+i-)(
pharray[indexl-layloutibaihift] [jj;
index-index+l;

suin-0 .0;



sum-sum+pharrayf il;

lay2outfbshiftl [lay2posn] - sum*lay2wgt;

lay2posn -lay2posn + 1;

1* Load input array for multilayer perceptron *
loadcnt-O;
for(i-O; i<4; i++)(

for(J-O; J<270; J++)(
input[loadcnt] - lay2out[i][jl;
loadcnt-loadcn~t+l.;

/* Propagate thru multilayer perceptron

for(n-O; n~midnodes; n-.+)(
stUM-0.0;
for(i-O; i<1080; i++)(
sum - sum + midvgts[n][i]*input[i];

if)smmdht~ ]<2.)(mdn-.;
aleif ((sum+midtheta[n])<-20. ) ( ,ymidfn]-0.0;)

else (ymid[n]-(double)(l.0/(l.0+exp(-(sum+midtheta[n])?)):))
)/* End (n) loop changing hidden layer nodes *

for(n-0; n<4; n++)(
sum-0.0
for(i-0; i<midnodes; i++)(
sum - sum + outwgts[n][i]*ymid[i];

if(smothean),00 (otn-.;
eleif ((sum+outtheta[n])<-20 0) (yout[n]-0.0;)

else (you~tfn]-(double)(l.0/(l.O+exp(-(sum+outtheta[n]))));)
) /* End (n) loop changing output layer nodes *

/* End propagation thru network */

/* Decision criteria for correct classification *
neurtcnt-O;
for(n-O; n<4; n++)(
if((yout[nJ>O.S) && (class[testvec]-n)) (neurtcnt-neurtcnt+1;)
if((youtjn])<O.2) && (class[testvec]f-n)) (neurtcnt-neurtent-+l;)
) /* End loop for checking all foui output neurons *
if(neurtcnt-4) (numright-numright+l;)

) * end of testing loop (testvec) *
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itnum - bigloop*numtrn;
accuracy - (float)numright/(float)flumttveC;
printf("'Training Epoch #: %d Accuracy-tf\n". itnum, accuracy);

/ * end of bigloop *
) * end of main *
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/* This preprocessing program propagates all image inputs from
the input data set through two hard-wired layers of the
biologically-motivated image classification network. The
program transforms input pixel data vectors to extracted
feature vectors. The feature vectors, along with flag
and class designating integers, are written to an output
file which can be accessed later by a separate
classification routine. Name: PREPROC.C *

#include <stdio.h>
#include <mnath.h>

#define numvec 88 /* Specify total number of vectors */
#define numfeat 8064 /* Specify number of features per vector */

#define pi 3.14159265358979

char *malloco;

main ()

int *flag, *x, *class, gabcount;
int i, J, bigloop, bshift;
int rowstpix, colstpix, rowsthl, colsthl, index, laylposn, lay2posn;
double rfarray[64), absum, avbright, esum, energy, lay2wgt;
double sum, fx, fy, a, 1;
double laylout[4][434], lay2o-it[4]i270], pharray[25];
double gabor[4][64];

/* Open and read in data file to arrays flag[], class[], x[][] */

FILE *fp;
fp-fopen("bigimage","r');
if(fp--NULL) exit(O);

flag - (int *) malloc(numvec * sizeof(int));
class - (int *) malloc(numvec * sizeof(int));
x - (int *) mallac(numvec * numfea. * sizeof(int));

for(i-0; i<numvec; i++)(
fscanf(fp,"%d",&flag[ij);

for(J-0; J<numfeat; J++)(
fscanf(fp,"%d" ,&x[i*numfeat+j]);
)

fscanf(fp,"%d" ,&c!ass[i]);

fclose(fp);

/* Test printout module: */
/*for(i-0; i<numvec; i++)(
printf("Flg-%d Class-%d\n",flag[ij]0lass[i]);
S*/



/* Establish constant "veight" values for Gabor. function orientations

and "phase synchronizing" summation layer */

lay2vgt-l.0/25.0; /* Constant veight for all 2nd hidden layer nodes

/* Initialize four Gabor function weight arrays for first layer

(maximnum value cf each function is 0.5 to aid sigmoid computation) *

fx-0 .0;
fy-l.0;
gabcount-0;
for(i-0; i<-7; i++)(

for(J-0; J<-7; J++)(
a- 0.2*(float)i - 0.7;
b- 0.2*(floot)j - 0.7;
gabor[0J (gabcount]-

0.5*expC-pi*(a*a/3.0+b*b/3.0))*cos(2.0*pi*(fx*a+fy*b));
gabcount-gabcount+l;

fx-l.0;
fy-O. 0;
gabcount-0;
for(i-0; i<-7; i++)(

for(J-0; J<-7; J++)(
a- 0.2*(flceat)i - 0.7;
b- 0.2*(f'.oat)j - 0.7;
gaborf1] [gabcount]-

0.5*exp(-pi*(a*a/3.0+b*b/3.0))*cos(2.O*p1*(fx*a+fy*b));
gabcount-gabcount+l;

fy-1 .4142136;
gabcount-0;
ior(i-0; i<-7; i++)(

for(J-0; J<-7; J++)(
a- 0.2*(float~f. - 0.7;
b-. 0.2*(float)j - 0.7;
gabeor[2J [Sabcounti-

0.5*exp(-pi*(a*a/3.0+b*b/3.0))*cos(2.0*pi*(fx*a-ýfy*b));
gabcount-gabcount+l;

fx-l.4142136;
fy-0.0-l .4142136;
gabcount-0;

for(i-0; i<-7; i++)(
ao(- 0;2(l~ J-7 0.7;(
a- O.2*(float)j - 0.7;

gabor[3] [gabcount]-
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O.5wexp(-pi*(a*a/3.0+b*b/3.0))*cos(2.0*pi*(fx*a+fy*b));
gabcotunt-giibcount+l;

/* End of module establishing weights. Begin loop thru all vectors. *

for(bigloop-0; bigloop~numvec; bigloop++) (

/* Begin propagation thru netvork */
/* Begin receptive field window shifting loop *
laylposn-O;
for(rowstpix-0; rowstpix<-6656; rowstpix-rowstpix+512)(

for(colatpix-rovstpix; colstpix<-rovstpix+120; colstpix-colstpix+4)(
index-0;
for(i-colstpix; i<-coistpix+896; 1-1+128) (

for(j-i; J<-(i+7); J++)(
rfarray[indez]-(double)xj (bigloop*k8064)+J];
index-index+l;

1* LAMBERTIZATION AND CONTRAST NORMALIZATION MODULE (processes each
receptive field window) *

absunt-O.O;
for(i-O; i<64; i++)(
absum-absum.4.rfarrayl i];

avbright-absum/64 .0;
for(i-0; i<64;, i++)(
rfarray (i] -rfarray i - avbright;

esum-O.0;

esum-esum+(rfarray[ i]*rfarrayj i]);

energy-sqrt(esumn);
if (energy 1- 0.0) / * Do not normalize if energy-O.O *

rfarray [ii-rfarray [ ii/energy;

) * end normalization module *

/* Propagate thru to first hidden layer ou~tputs *

for(i-O; i<4; i++)( /* Load each lst layer block from single window *
summOD9;

for(J-0; J<64; J++)(
sum - sumn + ga',orli][Jj*rfarrayjjj;
) * Finished calculating one block, one position (first layer) *
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el~se imsn20.O) (laylout~i] [laylposn]-I.O;)

else (laylout[i][Iaylposn]-(double)(1.O/(l.O+exp(-sum)));)
) /* Finished calculating four blocks, one position (first layer) *

laylposn-laylposn+l;

)/* end of receptive field window shifting loops (all positions) *

/* Propagate thru second layer */
for(bahift-O; bshift<4; bshift++)(
lay2posn-O;
for(rovsthl-O; rowsthl<-279; rovsthlmrovsthl+31)(

for(colsthl-rovsthl; colsthl<-rovsthl+26; colsthl++) (
index-O;

for(i-colsthl; i<-colsthl+124; 1-1+31)(
for(j-i; J<m(i+4); J++)(

pharray [index] -laylout [bshift] (j];
index-index-.l;

for(i-0; i<25; i++)(
sum-sum+pharray[ iJ;

lay2out[bshift] [lay2posn] - sum*lay2wgt;

lay2posn - lay2posn + 1;

/* End propagation thru. output of summation layer *

/* Print to output file: flag, new comiponent values,
and class (for each vector) *

printfQ'%d\n" .flag[bigloopJ);
for(i-0; i<4; i++)(

for(J-0; J<270; J++)(
printf("%1.16f\n",lay2outli [Ji);

printf("%d\n" ,class [bigluop]);

/ * end of bigloop *
/ * end of main *
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/* This program inputs a data set consisting of previously
extracted feature vectors such as those transformed by
the biologically-motivated image processing layers in
PREPROC.C. This routine vertically normalizes the
input feature vectors and feeds them into a multilayer
perceptron classifier vith a variable number of hidden-
layer nodes. Input and interim values are
double precision.
Name: MLPNORM.C */

#include <stdio.h>
#include <math.h>

#define numexvec 44 /* Specify 0 of exemplar vectors */
#define numttvec 44 /* Specify 0 of test vectors */
#define numfeat 1080 /* Specify 0 of features per vector */
#define midnodes 30 /* Specify # of hidden layer nodes */

#define numruns 50 /* Specify 0 of result plot points */
#define numtrn 1000 /* Specify 0 training epochs between test/plot */

#define eta 1.0 /* Specify learning rate */

main (
int *flag, *class, i, J, n, neurtcnt, numright, itnum, randnum;
int bigloop, trnloop, testvec, row, col;
double *x, outtheta[4], midtheta[midnodes], sum, errsum;
double outvgts[4][midnodes], midwgts[midnodes][numfeat];
double d[4], errorout[4], errormid[midnodes], yout[4], ymid[midnodes];
double mean, sumsqdif, s;
float accuracy;

/* Open and load in transformed data file of extracted features */

FILE *fp;
fp-fopen( "preproc.out","r");
if (fp-NULL) exit(O);

flag - (int *) malloc((numexvec+numttvec)*sizeof(int));
class - (int *) malloc((numxerjec+numttvec)*sizeof(int));
x - (double *) malloc((numexvec+numttvec)*numfeat*sizeof(double));

for(i-0; i<(numexvec+numttvec); i++)(
fscanf(fp,"%d",&flag[i]);

for(J-0; J<numfeat; J++)(
fscanf(fp,"%lf",&x[i*numfeat+j]);
)

fscanf(fp,"%d" ,&class[i]);
)
fclose(fp);



/* Test printout module *
/* for(i-0; i<(numexvec+nunittvec); i++)(
printf("%d\n" ,flag[ i]);

for(J-0; J~nuifeat; J++)(
printf("%l 16f\n" x[ i*numfeat+j 1):

printfQ'%d\n" ,class [i]);

/* Vertically normalize x[numexvec+numttvec]rnumfeat] *
for(col-O; col'auimfeat; col++)(
sum-0.0;

for(rov-0; rovawumexvec; rov4-+)(
sum-sum+x [row*numfeat+col J;
I

mean-sum/(double) (numexvec);

sums qdif-0. 0;
for(rov-0; rowd~numexrvec; row++)(
sumsqdif-sumsqdif+(x~row*numfeat+col] -mean)*(x[row*numfeat+col] -mean);

s=(double)(sqrt(sumsqdif/(double)(numexvec)));
for(rov-0; rov<(nuinexvec+nunittvec); row++)(
x[row*numfeat+col1-Cx~rowfnumfeat+col] -mean)/s;

)/* End column incrementing loop *
/* Test printout loop */
1* for(rov-0; rov<(numexvec+numttvec); row++) (

for(col-0; colcnumfeat; col++)(
pr ~tf("For row-%d col=%d normxva'jue-%f\n"l,row~col,
x(rov*numfeat+col]);

srandom((unsigned)time(NULL)); /* Init random() seed off clock *

/* Initialize output theta and weight arrays *

for(i-0; i<4; i++)(
outtheta~iJ - (double)(random() % 101)/100.00 - 0.5;
outtheta[i] - outtheta[i]/(double)midnodes;

for(i-0; i~midnodes; i++)(
midtheta[iJ - (double)(raridom() % 101)/100.00 - 0.5;
midtheta[iJ - midtheta[i]/(double)numfeat;

for(i-O; i<4; i++)(
for(J-0; J~cmidnodes; J++)(
outwgts[iJ[j] - (double)(random() % 101)/100.00 - 0.5;
outwgts[iJ[jJ - outvgts[i~lj]/(doubl.e)midnodes;
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for(imO; icinidnodes; i++)(
for(J-O; J'znumfeat; J++)(
midvgts[iJ[j] - (double)(random() % 101)/100.00 - 0.5;
midvgtsfi] (j] - tnidwgts~i] (J]/Cdouble)numfeat;

/* End of initialization; begin loops for training and testing. *
for(bigloop-m1; bigloop<-numruns; bigloop++) (

/* Begin training loop */
for(trnloop-O; trnloop"~numtrn; trnloop++) (
randnum-(random() % numezvec),

/* Propagate thru unultilayer perceptron *
for(n-0; n--Aidnodes; n++)(
sum-O.O;

sum - sum + midwgts[n][i]*x[randnum*numfeat+i];

if) s m m d h t ~ ] < 2 .) ( m d n - . ;
eleif ((sum+midtheta[n])<-20.0) (ymid[n]-0.O;)

else (ymid[n]-(doublL)(l.O/(l.0+exp(-(sum+midthetti[n]))));)
) /* End (ni) loop changing hidden layer nodes *

for(n-O; n<4; n++)(
suMi-O. 0;
for(i-0. i<midnodes; i++)(
sum - sum + ovtwgts[,i][i]*ymid[iJ;

if ((sum+outthet&[n])<-20.0) {yout[n]-O.O;)
else if ((sum+outtheta[n])>20.0) (yout[nJ-1..O;)
else (yout[nJ-(double)(l.0/(l.O+exp(--(sum4-outtheta~n]))));)
) /* End (ai) loop changing output layc.r nodes *

/* End propagation thru. network */

/* Bsckpropagation to update perceptron weights *

for(n-0; n<4; n++)(
if (class[randnumj - n) (d~n]-1.0;)
else (d[n]-0.O;)

for~n-0; n<4; ra+4)(
errorout~n] - yout~r]*(1.O-youe[n])*(dln]-yrout[n]);

for(n-O; n~midnodes; n++)(
erraum-0. 0;

for(i-O; 1<4; i-+)(
errium - errsum + errorout[i]*autwgts[i] in];

einrormid~n] - ymid(n1*(l.O-ynmidfnj)*arrsum;
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for(i-O; i<4; i++)(
for(J-O; J~midnodes; J++)(
outvgtslil[jl - outvgts[i][jJ +-

(eta/(double)midnodes)*errorout~iJ*-ymid[j];

for(imO; i<4; i4-+)(
outtheta[i] - outtheta[i] + (eta/(double)midnodes)*erroroutf i];

for(i-O; i~anidnodes; i++)(
for(J-O; J<numfeat; Ji-+)(
midwgts~i][j] - midvgtsli][j] +

(eta/(double)nuiufeat)*errormid[i]*x~iandnum*numfeat+jI;

for(i-O; iaiidnodes; i++)(
midthetaf i) - rnidtheta~i] + (eta/(double)nwnfeat)*errorinid[i];

/* end of backprop *

) /* end of training loop (trnloop) *

/* Begin test loop to run thru each test vector *
numright-O;
for(testvec-riumexvec; testvec<(numexvec+nunlttvec); testvec++)(

/* Propagate thru. multilayer perceptron

fo:(ii-O; n~midnodes; a++-)(
surn-J. 0;

for(iw.0; i~numfear; i++e)(
sumn - sum + midvgtsfn][i]*xjtestvec*nuimfeat+i];

if ((sum+midtheta~n])<-2OA0) (ymid[ui]-O.0;)
else if ((sum+midrheta[n'j)>2O.0) (y"iid[n]-1.O;)
else (ymid[n)-(dot'ble)(1.O/(1.O+exp(-(sum~*midtheta[n]))));)
) /* End (ni) loop changing hidden layer nodes *

for(n-O; n<4; n++)(
sum-O.O;

for(i-O; i~midnodes; i++)(
SUM - sum + outVgtsjn][i]*:ymid[i];

if ((sum4-outthetainl)<-20.O) (youtfn]-O.0;)
else if ((sum+outtheta[nJ)>20.O) (yout[n]-1.0;)
else tyout11]-(double)(1.O/(l.O+ex~p(-(svum+outtheti[n]))));)
) /* End (n) loop changing output layer nodes *

/* End propagatio~n thru. nel.vork */
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/* Decision criteria for correct classification *
neurtcnt-O;
for(n-0; n~<4; n++)(
if((yout[n)>O.B) && (classltestvecl-n)) (neurtcnt-neurtcnt+l;)
if((yout[n]<O.2) && (classftestvec] I-n)) (neurtcnt-neurtcnt+l;)
) /* End ioop for checking all four output neurons *
if(neurtcnt-4) (numright-numright+l;)

) /* end of testing loop (testvec) *

itnum - bigloop*numtrn;
accuracy - (float)numright/(float)numttvec;
printf("Training Epoch 0: %d Accuracy-%f\n", itnum, accuracy);

) * end of bigloop *

)/* end of main *



/* Image classification network version for processing input
from PREPROCoC. Classifier incorporates a single-layer,
second--order neural network algorithm with automatic
vertical normalization of inputs and multiplied combos.
Multiplied combos are of same location node outputs
among the four different orientation groups. */

/* Name: IMGNORM2.C */

#include <stdio.h>
#include <math.h>

#define numneur 4 /* Specify total number of neurons across slab */
/* Number of neurons = number of classes */

#define numexvec 44 /* Specify number of exemplar vectors */
#define numttvec 44 /* Specify number of test vectors */
#define numfeat 1080 /* Specify number of features per vector */

/* numfeat also represents # FEATURE COLUMNS */
#define numruns 500 /* Specify number of result plot points */
#define numtrn 100 /* Specify # training iters between test/plot */

#define eta 1.0 /* Specify training factor */

char *malloc(); /* Must define for use of malloc thru program */
/*Need for this statement is compiler-dependent*/

main()

/* flag[] holds ID number of each data vector, class[) holds training
class associated with each data vector, x[][] holds feature
components of data vectors, quadin[][] holds second-order multiplied

combos of x values, wlin[][) and wquad[][] hold weights for all inputs
(including higher order combos), theta[] holds threshold values for
each neuron */

int *flag, *class;
int i, j, n, randnum, numquad, qcount;
int row, col, spot;
int neurtcnt, numright, bigloop, trnloop, testvec, itnum;
double d, y, error, neweta;
double *x, *wquad, *quadin;
double theta[num:ieur], wlin[numneur*numfeat];
double sum, linsum, quadsum, mean, s, sumsqdif, fanin;
float accuracy:
/* This module opens an input file and reads data into the

arrays flag[], class[], and x[][] */

FILE "fp;
fp=fopen("preproc.out","r"); /* Insert correct data file name here */
if(fp==NULL) exit(0);

/* Dynamic alloc of arrays prior to loading in data file values */

flag = (int *) malloc((numexvec+numttvec) * sizeof(int));
class = (int *) malloc((numexvecr+numttvec) * sizeof(int)):
x = (double *) malloc((numexvec+numttvec)*numfeat * sizeof(double));
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for(i=O; i<(numexvec+numttvec); ++i)(
fscanf(fp,"%d",&flag[i));

for(j=O; j<numfeat; ++j)(
fscanf(fp,"%lf",&x[i*numfeat+jfl;

) ~/* end inner loop *
fscanf(fp, "%d"I,&class[i]);

) ~/* end outer loop *

fclose(fp);

/* This test module prints out input data containing first two and
final feature components of each vector; checks the above file
opening module (comment out for final program) *

1* for(i=O; i<(numexvec+numttvec); ++i)(
printf("For flag=%d, class=%f, check features are %f %f %f\n",
flag[i], class[i], x[i*numfeat+O], x~i*numfeat+l],
x[i*numfeat+(numfeat-l)]);

/* This statement establishes the number of second-order
combos of feature inputs FOR EACH VECTOR (without commutative
redundancy), unique to this problem. Will be used for array
allocation. *

numquad=27 00;

/* Fill 2-D arrays for second order input combos:
quadin~numexvec+numttvec] [numquad] */

quadin=(double *) malloc( (numexvec+numttvec) *numquad*sizeof (double));
for (row=0; row< (numexvec+numttvec); row++)(
qcount=0;

for(spot=0; spot<270; spot++)(

for(j=i; j<=(Spot-F810) ; j=j+270)(
quadin[row*numquad+qcount] = x[row*numfeat+i] *x~row*numfeat+j 1;
qcount = qcount +1;

/ * end vector row incrementing loop *
/* Test printout module */
/* for(row=0; row<(numexvec+numttvec); row4 r)(

for(col=O; col<numquad; col++){
printf("For row=%d col=%d quadin=%f\n",row,col,
quiadin [row*numquad+col]);
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/* Begin VERTICAL NORMALIZATION of x, quadin arrays *

/* Vertically normalize x[numexvec+numttvec) [numfeat] *
for(col=O; col<numfeat; col++)(
Sum=O. 0;

for(row=0; row<numexvec; row++)(
sum=sum+x [row*numfeat+col J;

mean=sum/ (double) (numexvec);

sumsqdif=O.o;
for(row=O; row<numexvec; row++)(
sumsqdif=sumsqdif+ (x~row*numfeat+colJ -mean) *(x[row*numfeat+col] -mean);

s=(double) (sqrt(sumsqdif/ (double) (numexvec)));
for(row=0; row< (numexvec+numttvec); row++)({
x [row*numfeat+col)=(x [row*numfeat+col ]-mean) /s;

I/* End column incrementing loop *
/* Test printout loop */
/* for(row=O; row< (numexvec+numttvec); row++)(

for(col=O; col<numfeat; col++)(
printf ("For row=%d col=%d normxvalue=%f\n",row,col,
x[row*numfeat+col]);

/* Vertically normalize quadin[numexvec+numttvec] [numquad] *
for(col=O; col<numquad; col++)(
sum=O. 0;

for(row=O; row<numexvec; row++)(
sum=sum+quadin rrow*numquad+col];

mean:=sum/ (double) (numexvec);

sums qdif=0.0;
for(row=0; row<numexvec; row++)(
sumsqdif~sumsqdif+
(quadin[row*numquad+col]-mean) *(quadin[row*numquad+col ]-mean);

s.z-(double) (sqrt(sumsqdif/(double) (numexvec)));
for(row=O; row< (numexvec+numttvec); row++)(
quadin [row*numquad+col]=(quad in [row*numquad+col ]-mean) /s;

/* End column incrementing loop *
/* Test printout ik,.op */
/* for(row=0; row<(rlumexvec+numttvec); row++)(

for(co1=O; col<numquad; col++)(
printf("For row=%d col=%d normquadvalue=%f\n",row,cc
quadin~row*numquad~col]);

/* End of vertical normalization *
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srandom((unsigned)time(NULL)); /* Init random() seed off clock *

/* Loop to initialize theta array (one for each neuron) with random
floating point value between -0.5 and 0.5 *

for(i=O; i<numnaar; i++)(
thetati)=(double)(random() 1 01)/100.00 - 0.5;
/* printf("wFor i4=%d theta=%f\n"I,i,theta[i]); *

/* Loop to initialize linear input weights array wlin[numneur](nuxnfeat]
with random floating point values between --0.5 and 0,5 *

for(n=0; n<nuxnneur; n++)(
1* printf("For neuron # %d\n",n); *

for(i=-0; i<numfeat; i++)(
wlin[n*numfeat+i]=(double) (random() 1 01)/100.00 - 0.5;
/* printf("For i=%d wlin=%f\n"1,i,wlin[n*numfeat+i)); *

) * end of nested loop *

fanin = (double)numfeat + (doubleinumquad;
1* fanin = 1; */
neweta = (double) eta / fanin;
1* printf("lneweta= %f\n",neweta); *

/* Loop to initialize quadratic input weights array
wquad~numneurflnumquad] with random floating point values between
-0.5 and 0.5 */

wquad = (double *) malloc(numneur*numquad*sizeof(double));
f or (n=0; n<nuynneur; n++)(
/* printf("For rieuron # %d\n",n); *

for(i=0; i<numquad; ±++)(
wquad[n*numqua&4-i]=(double) (random()o % 101)/100.00 - 0.5;
1* printf("For i=%d quadweight=%f\n", i,wquad[n*numquad+i]); *

I/* end of nested loop *

/* End of initialization; Begin loops for training and testing *
for(bigloop=l; bigloop<=nurnruns; bigloop++)(

/* Begin training loop */
for(trnloop=0; trnloop<numtrn; trnloop++)(

/* Randomly select an exemplar vector row (flag#)/
randnum=(random() % numexvec)j
1* printf("Randumly selected vector flag number is %d\n",randnum); *

for(n-=0; n<numneur; n++){ /* Loop to update weights for each neuron *
li~nsum=0. 0;

for(i=0; i<numfeat;, i++)',
linsuxn=linsum+wlin[n*numfeat+i) *x[randnum*nunfeat-i-i];

quadsum=0. 0;
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for(i=O; i<numquad; i++){
quadsum=quadsum+wquad[n*r~umquad+i] *quadin(randnum*niumquad+i];

sum=linsum+guadsum;
if ((sun'+theta[n])<-20.O) (y=0.0;)
else if ((sum+theta[nJ)>20.O) (y=1.0;)

else (y=(double)(l.O/(l.O+exp(-(sum+theta[n]))));)

/* Criteria for training each class to fire a specific neuron *
if (class~randnum]==n) (d=1.0;)
else (d=0.0;)

error=y*(l.O-y)*(d-y);
/* pr5i.rntf("lerror=%f\n",error); *

for(i=O; i<numfeat; i.+I+)(
wlin[n*numfeat+i]=wlin[n*nunlfeat+i]+neweta*error*x[randnum*numfeat+i];
/* printf("For i=%d wli-n=%f\n",i,wlin[n*nuxnfeat+i)); *

for(i=O; i<numquad; i++){
wquad [n*numquad+i ]=wquad [n*numquad+i] +
neweta*error*quadin [randnum*numquad+i];
/* printf("For i=%d quadweight=%f\n", i,wguad[n*numquad+i]); *

theta [n]=theta [n] +neweta*error;
/* printf("For neuron # %d theta+%f\nII,n,t-heta[n]); *
) /* end of weight training loop for each neuron's weights *

) /* end of complete training loop */

/* Begin test loop to run thru each test vector *
numright=O;
for(testvec=-numexvec; testvec<(nuinexvec+numttvec); testxec++)(
/* printf("ltestvec=%d\n",testvec); *

neurtcnt=O;
tor(n=O; n<numneur; n++){
1 insum=O. 0;

for(i=O; i<numfeat; i++){
linsum=linsum-$wlin[n*numfeat+i]*x[testvec*numfeat-l-;

quac~sum=0. 0;
for(i=0; i<numguad; i++)(
quadsum=qiuadsum-r-wquad[n~nun'guad+i] *quadin [testvec*nuniquad+il;

sum=l insum+quadsum;

if ((sum+theta[nH)<-20.0) (y=0.0;)
else if ((sum+theta~n))>2O.O) (y=1.0;"

else {y=(double)(l.O,/(1.0+exp(-(sumn+theta[n)))));)
/* printf("'y=%f class[testvec)=%f\n",y,class~testvec-]); *
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/* Test decisioni criteria for identifying classes *
if ((y>0.8) && (classjtestvec]==n)) jrxsurtcnt=neurtcnt+l:)
if ((y<0.2) && (class[testvec) !=n)) {neurtcnt=neurtcnt+l;)

) /* end of neurons (n) correct test loop *

if (neurtant==numneur) {numright=numrighr+l;)
) /* end of testing loop running thru, each test vector (t.estvec) *

itnum~=bigloop*numtrn;
accuracy= (float) numright/ (float) rumttvec;
printf("Training iteration 1:%d accuracy=%f\n",itnvm,accuracy);

/* end of bigloop *

/* en~d of main *
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